Bioactive Natural Products from Plants and Biotechnological Approaches for their Production

Authors

  • Niraj Tripathi Biotechnology Centre, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
  • Swapnil Sapre Biotechnology Centre, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
  • Iti Gontia Mishra Biotechnology Centre, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
  • Vijay Prakash Biotechnology Centre, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
  • Sharad Tiwari Biotechnology Centre, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India

DOI:

https://doi.org/10.6000/1927-3037.2016.05.03.4

Keywords:

Natural Products, Biosynthetic Pathway, Cell Culture, RNAi, Transcriptomics.

Abstract

Bioactive natural products are economically important as drugs, fragrances, pigments, food additives and pesticides. The biotechnological tools are important to select, multiply, improve and analyze medicinal plants for production of such products. The utilization of medicinal plant cells for the production of natural or recombinant compounds of commercial interest has gained increasing attention over the past decades. Plant tissue culture systems are possible source of valuable medicinal compounds, fragrances and colorants, which cannot be produced by microbial cells or chemical synthesis. In vitro production of bioactive natural products in plant cell suspension culture has been reported from various medicinal plants and bioreactors are the key step towards commercial production. Genetic transformation is a powerful tool for enhancing the productivity of novel products; especially by Agrobacterium tumefacians. Combinatorial biosynthesis is another approach in the generation of novel natural products and for the production of rare and expensive natural products. Recent advances in the molecular biology, enzymology and bioreactor technology of plant cell culture suggest that these systems may become a viable source of important secondary metabolites. Genetic fingerprinting could be a powerful tool in the field of medicinal plants to be used for correct germplasm identification. In addition, when linked to emerging tools such as metabolomics and proteomics, providing fingerprints of the plant’s metabolites or protein composition, it gives data on phenotypic variation, caused by growth conditions or environmental factors, and also yield data on the genes involved in the biosynthesis. DNA profiling techniques like DNA microarrays serve as suitable high throughput tools for the simultaneous analysis of multiple genes and analysis of gene expression that becomes necessary for providing clues about regulatory mechanisms, biochemical pathways and broader cellular functions. New and powerful tools in functional genomics can be used in combination with metabolomics to elucidate biosynthetic pathways of natural products.

References

Sheela JAH. Qualitative analysis of secondary metabolites of the plant Clematis gouriana. Int J Innov Res Sci Eng Technol 2013; 2: 2356-2358.

Jacobo-Vela´zquez DA, Gonza´lez-Aguero M, Cisneros-Zevallos L. Cross-talk between signalling pathways: The link between plant secondary metabolite production and wounding stress response. Sci Rep 2015; 5: 1-10.

Kennedy DO, Wightman EL. Herbal Extracts and Phyto-chemicals: Plant Secondary Metabolites and the Enhance-ment of Human Brain Function. Adv Nutr 2011; 2: 32-50. http://dx.doi.org/10.3945/an.110.000117

Akula R, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Sig Behav 2011; 6: 1720-1731. http://dx.doi.org/10.4161/psb.6.11.17613

Canter PH, Thomas H, Ernst E. Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 2005; 23: 180-185. http://dx.doi.org/10.1016/j.tibtech.2005.02.002

Rao RS, Ravishankar GA. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 2002; 20: 101-153. http://dx.doi.org/10.1016/S0734-9750(02)00007-1

Fridman E, Pichersky E. Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr Opin Plant Biol 2005; 8(3): 242-248. http://dx.doi.org/10.1016/j.pbi.2005.03.004

Mandolino G, Carboni A. Potential of marker assisted selection in hemp genetic improvement. Euphytica 2004; 140: 107-120. http://dx.doi.org/10.1007/s10681-004-4759-6

Turlings TCJ, Loughrin JH, McCall PJ, Röse USR, Lewis WJ, Tumlinson JH. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. PNAS 1995; 92: 4169-4174. http://dx.doi.org/10.1073/pnas.92.10.4169

Berli FJ, Moreno D, Piccolo P et al. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf Tissues to ultraviolet-B radiation by enhancing ultraviolet –absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 2010; 33(1): 1-10.

Gupta VN, Datta SK. Influence of gibberellic acid on growth and flowering in chrysanthemum (Chrysanthemum morifolium Ramat) cv. Jayanti. Indian J Plant Physiol 2001; 6: 420-422.

Ouzouidou G, Llias I. Hormone induced protection of sunflower photosynthetic apparatus against copper toxicity. Plant Biol 2005; 49: 223-228. http://dx.doi.org/10.1007/s10535-005-3228-y

Mordue AJ, Blackwell A. Azadirachtin: an update. J Insect Physiol 1993; 39: 903-924. http://dx.doi.org/10.1016/0022-1910(93)90001-8

Eisner T, Meinwald J. Chemical ecology: The chemistry of biotic interaction. Eds, National Academy Press, Washington, DC 1995; 214 pp.

Wuyts N, Lognay G, Swennen R, Waele DD. Nematode infection and reproduction in transgenic and mutant Arabidopsis and Tobacco with an altered phenylpropanoid metabolism. J Exp Bot 2006; 57(11): 2825-2835. http://dx.doi.org/10.1093/jxb/erl044

Savirnata NM, Jukunen-Titto R, Oksanen E, Karjalainen RO. Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Env Poll 2010; 158(2): 440-446. http://dx.doi.org/10.1016/j.envpol.2009.08.029

Brooker N, Windorski J, Blumi E. Halogenated coumarin derivatives as novel seed protectants. Commun Agric Appl Biol Sci 2008; 73(2): 81-89.

Serghini K, Perez De Lugue A, Castejon MM, Garcia TL, Jorrin JV. Sunflower (Helianthusannuus L.) response to broomraoe (Orobanche cernua Loefl.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins. J Exp Bot 2001; 52: 227-234.

Ali ST, Mahmooduzzafar-Abdin MZ, Iqbal M. Ontogenetic changes in foliar features and psoralen content of Psoralea corylifolia Linn. Exposed to SO2 stress. J Environ Biol 2008; 29(5): 661-668.

Lewis N, Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 1990; 41: 455-496. http://dx.doi.org/10.1146/annurev.pp.41.060190.002323

Gould JM. Probing the structure and dynamics of lignin in situ. What’s new in Plant Physiol 1983; 14: 5-8.

Kondo T, Yoshida K, Nakagawa A, Kawai T, Tamura H, Goto T. Structural basis of blue-color development in flower petals from Commelina communis. Nature 1992; 358: 515-518. http://dx.doi.org/10.1038/358515a0

Lake JA, Field KJ, Davey MP, Beerling DJ, Lomax BH. Metabolomic and physiological responses reveal multi-phasic acclimation of Arabidopsis thaliana to chronic UV radiation. Plant Cell Environ 2009; 32(10): 1377-1389. http://dx.doi.org/10.1111/j.1365-3040.2009.02005.x

Sreevidya VS, Srinivasa RC, Rao C, Sullia SB, Ladha JK, Reddy PM. Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J Exp Bot 2006; 57(9): 1957-1969. http://dx.doi.org/10.1093/jxb/erj143

Posmyk MM, Kontek R, Janas KM. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Safety 2009; 72(2): 596-602. http://dx.doi.org/10.1016/j.ecoenv.2008.04.024

Novak K, Lisa L, Skrdleta V. Rhizobial nod gene-inducing activity in pea nodulation mutants: Dissociation of nodulation and flavonoid response. Physiol Plant 2004; 120(4): 546-555. http://dx.doi.org/10.1111/j.0031-9317.2004.0278.x

Oates JF, Waterman PG, Choo GM. Food selection by the south Indian leaf monkey, Presbytis johnii in relation to leaf chemistry. Oecologia 1980; 45: 45-56. http://dx.doi.org/10.1007/BF00346706

Mayer AM. Polyphenols oxidase in plants recent progress. Phytochem 1987; 26: 11-20. http://dx.doi.org/10.1016/S0031-9422(00)81472-7

Kang SY, Kim YC. Decursinol and decursin protect primary cultured rat cortical cells from glutamate-induced neurotoxicity. J Pharm Pharmacol 2007; 59(6): 863-870. http://dx.doi.org/10.1211/jpp.59.6.0013

Gutiérrez-Alcalá G, Gotor C, Meyer AJ, Fricker M, Vega JM, Romero LC. Glutathione biosynthesis in Arabidopsis trichome cells. PNAS 2000; 97: 11108-11113. http://dx.doi.org/10.1073/pnas.190334497

Choi YE, Harada E, Wada M et al. Detoxification of cadmium in tobacco plants: Formation and active excretion of crystal containing cadmium and calcium through trichomes. Planta 2001; 213: 45-50. http://dx.doi.org/10.1007/s004250000487

Nosito FF, Pirovano L, Cocucci M, Sacchi GA. Cadmium-induced sulphate uptake in maize roots. Plant Physiol 2002; 129: 1872-1879. http://dx.doi.org/10.1104/pp.002659

Conklin PL, Barth C. Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 2004; 27: 959-970. http://dx.doi.org/10.1111/j.1365-3040.2004.01203.x

Foyer CH, Rennenberg H. Regulation of glutathione synthesis and its role in abiotic and biotic stress defence. In: Brunold C, Rennenberg H, De Kok LJ, Stulen L, Davidian JC (Eds.) Sulphur Nutrition and Sulphur Assimilation in Higher Plants. Bern: Paul Haupt 2000; pp. 127-153.

De Vos M, Jander G. Myzus persicae (gren peach aphid) salivery components induce defence responses in Arabidopsis thaliana. Plant Cell Environ 2009; 32(11): 1548-1560. http://dx.doi.org/10.1111/j.1365-3040.2009.02019.x

Leustek T. Sulphate metabolism. Somerville CR, Meyerowitz EM, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, 2002.

Grubb C, Abel S. Glucosinolate metabolism and its control. Trends Plant Sci 2006; 11: 89-100. http://dx.doi.org/10.1016/j.tplants.2005.12.006

Geu-Flores F, Olsen C, Halkier BA. Towards engineering glucosinolates into non- cruciferous plants. Planta 2009; 229(2): 261-270. http://dx.doi.org/10.1007/s00425-008-0825-y

Lipka U, Fuchs R, Kuhns C, Petutschnig E, Lipka V. Live and let die-Arabidopsis non-host resistance to powdery mildews. Eur J Cell Biol 2010; 89(2): 194-199. http://dx.doi.org/10.1016/j.ejcb.2009.11.011

Monde K, Osawa SM, Harada N et al. Synthesis and absolute stereo chemistry of a cruciferous phytoalexin, Spirobrassinin. Chem Lett 2000; 598: 886-887. http://dx.doi.org/10.1246/cl.2000.886

Van Loon LC, Pierpoint WS, Boller T, Conejero V. Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Rep 1994; 12: 245-264. http://dx.doi.org/10.1007/BF02668748

Thomma BPHJ, Cammue BPA, Thevissen K. Plant defensins. Planta 2002; 216(2): 193-202. http://dx.doi.org/10.1007/s00425-002-0902-6

Parashina EV, Serdobinskii LA, Kalle EG et al. Genetic engineering of oilseed rape and tomato plants expressing a radish defensin gene. Russ J Plant Physiol 2000; 47: 417-423.

Peumans WJ, Van DEJM. Lectins as plant defence proteins. Plant Physiol 1995; 109(2): 347-352. http://dx.doi.org/10.1104/pp.109.2.347

Hegnauer R. Biochemistry, distribution and taxonomic relevance of higher plant alkaloids. Phytochem 1988; 27: 2423-2427. http://dx.doi.org/10.1016/0031-9422(88)87006-7

Hartmann T. Alkaloids. Herbivores: Their interactions with secondary plant metabolites Vol I The chemical participants, 2nd ed., Rosenthal GA and Berenbaum MR (Eds.) Academic Press, San Diego 1991; pp. 33-85.

Ballhorn DJ, Kautz S, Heil M, Hegeman AD. Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. Plant Signal Behav 2009; 4(8): 735-745. http://dx.doi.org/10.1371/journal.pone.0005450

Shalaka DK, Sandhya P. Micropropagation and organogenesis in Adhatoda vasica for the estimation of vasine. Pharmacogn Mag 2009; 5: 539-363.

Maurya S, Singh D. In vitro callus culture of Adhatoda vasica: a medicinal plant. Ann Biol Res 2010; 1(4): 57-60.

Singh B, Sharma RA. Pyrroloquinazoline alkaloids from tissue cultures of Adhatoda vasica and their antioxidative activity. Am J Phytomed Clin Therapeut 2014; 2: 403-412.

Lee SY, Cho SJ, Park MH, Kim YK, Choi JI, Park SU. Growthand rutin production in hairy root culture of buck weed (Fagopyruum esculentum) Prep. Biochem. Biotechnol 2007; 37: 239-246. http://dx.doi.org/10.1080/10826060701386729

Roy D, Mukhopadhyay S. Enhanced rosmarinic acid production in cultured plants of two species of Mentha. Indian J Exp Biol 2012; 50(11): 817-825.

Bauer N, Leljak-Levanic D, Jelaska S. Rosmarinic acid synthesis in transformed callus culture of Coleusblumei Benth. Z Naturforsch 2004; 59: 554-560.

Hakkim LF, Kalyani S, Essa M, Girija S, Song H. Production of rosmarinic acid in Ocimum sanctum (l.) cell suspension cultures by the influence of growth regulators. Int J Biol Med Res 2011; 2(4): 1158 -1161.

Yang L, Cao YL, Jiang JG, Lin QS, Chen J, Zhu L. Response surface optimization of ultrasound-assisted flavonoids extraction from the flower of Citrus aurantium L. var. amara. Engl J Sep Sci 2010; 33: 1349-1355.

Krolicka A, Kartanowicz R, Wosinskia S, Zpitter A, Kaminski M, Lojkowska E. Induction of secondary metabolite production in transformed callus of Ammi majus L. grown after electromagnetic treatment of the culture medium. Enzyme Microb Technol 2006; 39: 1386-1389. http://dx.doi.org/10.1016/j.enzmictec.2006.03.042

Staniszewska I, Krolicka A, Mali E, Ojkowska E, Szafranek J. Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme Microb Technol 2003; 33: 565-568. http://dx.doi.org/10.1016/S0141-0229(03)00180-7

Yaoya S, Kanho H, Mikami Y, Itani T, Umehara K, Kuroyanagi M. Umbelliferone released from hairy root cultures of Pharbitis nil (L.) treated with copper sulphate and its subsequent glucosylation. Biosci Biotechnol Biochem, 2004; 68: 1837-1841. http://dx.doi.org/10.1271/bbb.68.1837

Ikuta A, Kamiya K, Satakek T, Saiki Y. Triterpenoids from callus cultures of Paeonia species. Phytochem 1995; 38: 1203-1207. http://dx.doi.org/10.1016/0031-9422(94)00445-Y

Swain SS, Rout KK, Chand PK. Production of anti-cancer compound taraxerol in Agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.). Appl Biochem Biotechnol, 2012; 168(3): 487-503. http://dx.doi.org/10.1007/s12010-012-9791-8

Xu H, Kim YK, Suh SY, Udin MR, Lee SY, Park SU. Decursin production from hairy root culture of Angelica gigas. J Korean Soc Appl Biol Chem 2008; 51: 349-351. http://dx.doi.org/10.3839/jksabc.2008.062

Kim JS, Lee SY, Park SU. Resveratol production in hairy root culture of peanut, Arachis hypogaea L. transformed with different Agrobacterium rhizogenes strains. Afr J Biotechnol 2008; 7: 3788-3790.

Condori J, Sivakumar G, Hubstenberger J, Dolan MC, Sobolev VS, Medina-Bolivar F. Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: Effects of culture medium and growth stage. Plant Physiol Biochem 2010; 48: 310-318. http://dx.doi.org/10.1016/j.plaphy.2010.01.008

Keskin N, Kunter B. Production of trans-resveratrol in callus tissue of öküzgözü (Vitis vinifera L.) in response to ultraviolet-c irradiation. J Anim Plant Sci 2010; 20(3): 197-200.

Yu SH, Zha JP, Zhan WH, Zhang DQ. Contents comparison of resveratrol and polydatin in the wild Polygonum cuspidatum plant and its tissue cultures. China J Chinese Mat Med 2006; 31(8): 637-641.

Baldi A, Dixit VK. Enhanced artemisinin production by cell cultures of Artemisia annua. Curr Trends Biotechnol Pharm 2008; 2: 341-348.

Nair MSR, Acton N, Klayma DL. Production of Artemisinin in tissue cultures of Artemisia annua. J Nat Prod 1986; 49: 504-507. http://dx.doi.org/10.1021/np50045a021

Olivira AJB, Koike L, Reis FAM, Shepherd SLK. Callus culture of Aspidosperma ramiflorum Muell.-Arg.: growth and alkaloid production. Acta Scientia 2001; 23: 609-612.

Sujanya S, Poornasri DB, Sai I. In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica. J Biosci 2008; 33: 113-120. http://dx.doi.org/10.1007/s12038-008-0027-6

Srivastava P, Chaturvedi R. Increased production of azadirachtin from an improved method of androgenic cultures of a medicinal tree Azadirachta indica A. Juss Plant Signal Behav 2011; 6(7): 974-981. http://dx.doi.org/10.4161/psb.6.7.15503

Singh M, Chaturvedi R. Sustainable production of azadirachtin from differentiated in vitro cell lines of neem (Azadirachta indica). AoB Plants 2013; 1-14. http://dx.doi.org/10.1093/aobpla/plt034

Srivastava S, Srivastava AK. Azadirachtin production by hairy root cultivation of Azadirachta indica in a modified stirred tank reactor. Bioprocess Biosyst Eng 2012; 35(9): 1549-1553. http://dx.doi.org/10.1007/s00449-012-0745-x

Satdive RK, Fulzele DP, Eapen S. Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. J Biotechnol 2007; 128: 281-289. http://dx.doi.org/10.1016/j.jbiotec.2006.10.009

Wagiah ME, Alam G, Wiryowidagdo S, Attia K. Improved production of the indole alkaloid cathin-6-one from cell suspension cultures of Brucea javanica (L.) Merr. Indian J Sci Technol 2008; 1: 1-6.

Kusakari K, Yokoyama M, Inomata S. Enhanced production of saikosaponins by root culture of Bupleurum falcatum L. using two step control of sugar concentration. Plant Cell Rep 2000; 19: 1115-1120. http://dx.doi.org/10.1007/s002990000240

Hao J, Guan Q. Synthesis of saikosaponin in adventitious roots of Bupleurum chinense by semi-continuous culture. Plant Cell Tiss Organ Cult 2012; 108: 159-165. http://dx.doi.org/10.1007/s11240-011-0012-x

Nikolaeva TN, Zagoskina NV, Zaprometov MN. Production of phenolic compounds in callus cultures of tea plant under the effect of 2, 4-D and NAA. Russ J Plant Physiol 2009; 56: 45-49. http://dx.doi.org/10.1134/S1021443709010075

Umamaheswari A, Lalitha V. In vitro effect of various growth hormones in Capsicum annuum L. On the callus induction and production of capsaicin. J Plant Sci 2007; 2: 545-551. http://dx.doi.org/10.3923/jps.2007.545.551

Kehie M, Kumaria S, Tandon P. In vitro plantlet regeneration from nodal segments and shoot tips of Capsicum chinense Jacq. cv. Naga King Chili. 3Biotech 2012; 2: 31-35.

Kehie M, Kumaria S, Tandon P. Manipulation of culture strategies to enhance capsaicin biosynthesis in suspension and immobilized cell cultures of Capsicum chinense Jacq. cv. Naga King Chili. Bioprocess Biosyst Eng 2014; 37(6): 1055-1063. http://dx.doi.org/10.1007/s00449-013-1076-2

Nazif NM, Rady MR, Seif MM. Stimulation of anthraquinone production in suspension cultures of Cassia acutifolia by salt stress. Fitoterapia 2000; 71: 34-40. http://dx.doi.org/10.1016/S0367-326X(99)00101-X

Supe U. Analysis of anthraquinone by callus tissue of Aloe barbadensis. Rec Res Sci Tech 2013; 5(2): 54-56.

Deshmukh SR, Wadegaonkar VP, Bhagat RP, Wadegaonkar PA. Tissue specific expression of Anthraquinones, flavonoids and phenolics in leaf, fruit and root suspension cultures of Indian Mulberry (Morinda citrifolia L.). Plant Omics J 2011; 4(1): 6-13.

Huang B, Lin H, Yan C, Qiu H, Qiu L, Yu R. Optimal inductive and cultural conditions of Polygonum multiflorum transgenic hairy roots mediated with Agrobacterium rhizogenes R1601 and an analysis of their anthraquinone constituents. Pharmacogn Mag 2014; 10(37): 77-82. http://dx.doi.org/10.4103/0973-1296.126671

Baque MA, Shiragi MHK, Lee EJ, Paek KY. Elicitor effect of chitosan and pectin on the biosynthesis of anthraquinones, phenolics and flavonoids in adventitious root suspension cultures of Morinda citrifolia (L.). Aust J Crop Sci 2012; 6(9): 1349-1355.

Komaraiah P, Kishor PBK, Carlsson M, Magnusson KE, Mandenius CF. Enhancement of anthraquinone accumulation in Morinda citrifolia suspension cultures. Plant Sci 2005; 168: 1337-1344. http://dx.doi.org/10.1016/j.plantsci.2005.01.017

Ataei‐Azimi A, Delnavaz Hashemloian B, Ebrahimzade H, Majd A. High in vitro production of anticanceric indole alkaloid from periwinkle (Catharanthus roseus) tissue culture. Afr J Biotechnol 2008; 7: 2834‐2839.

Lee-Parsons CWT, Rogce AJ. Precursor limitations in methyl jasmonate induced Catharanthus roseus cell cultures. Plant Cell Rep 2006; 25: 607-612. http://dx.doi.org/10.1007/s00299-005-0109-y

Verma AK, Singh RR, Singh S. Improved alkaloid content in callus culture of Catharanthus roseus. Bot Serb 2012; 36 (2): (2012) 123 -130.

Kalidass C, Ramasamy V, Danie MA. Effect of auxin and cytokinin on vincristine production by callus cultures of Catharanthus roseus L. Trop Subtrop Agroecosys 2010; 12: 283 – 288.

Ramani S, Jayabaskaran C. Enhanced catharathine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. J Mol Signal 2008; 3: 9-14. http://dx.doi.org/10.1186/1750-2187-3-9

Roat C, Ramawat KG. Elicitor induced accumulation of stilbenes in cell suspension cultures of Cayratia trifoliata (L.) Domin. Plant Biotechnol Rep 2009; 3: 135-138. http://dx.doi.org/10.1007/s11816-009-0082-y

Kim OT, Bang KH, Shin YS, Lee MJ. Enhanced production of asiaticoside from hairy root cultures of Centella asiatica [L.] Urban elicited by methyl jasmonate. Plant Cell Rep 2007; 26(11): 1941-1949. http://dx.doi.org/10.1007/s00299-007-0400-1

Kiong AL, Mahmood M, Fodzillan NM, Daud SK. Effects of precursor supplementation on the production of triterpenes by Centella asiatica callus culture. Pak J Biol Sci 2005; 8: 1160-1169. http://dx.doi.org/10.3923/pjbs.2005.1160.1169

Hiraoka N, Bhatt ID, Sakurai Y, Chang J. Alkaloid production by somatic embryo cultures of Corydalis ambigua. Plant Biotechnol 2004; 21: 361-366. http://dx.doi.org/10.5511/plantbiotechnology.21.361

Narasimhan S, Nair GM. Proceedings of the International Symposium on Plant Biodiversity: Conservation and Evaluation, Bose Institute, Kolkata pp. 2002; 78-79.

Hohtola A, Jalonen J, Tolnen A, et al. Natural product formation by plants, enhancement, analysis, processing and testing. In: Sustainable use renewable natural resources – from principles to practices (Eds.) Jalkanen A and Nygren P. University of Helsinki Publication. 2005; pp. 34-69.

Shohael AM, Murthy HN, Hahn EJ, Paek KY. Methyl jasmonate induced overproduction of eleuthrosides in somatic embryos of Eleutherococcus senticosus cultured in bioreactors. Electron J Biotechnol 2007; 10: 633-637. http://dx.doi.org/10.2225/vol10-issue4-fulltext-13

Schmeda-Hirschmann G, Jordan M, Gertn A, Wilken D, Hormazabal E, Tapia AA. Secondary metabolite content in Fabiana imbricate plants and in vitro cultures. Z Naturforsch 2004; 59: 48-54.

Lee SY, Xu H, Kim YK, Park SU. Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World J Microbiol Biotechnol 2007; 20: 969-972.

Gao SL, Zhu DN, Cai ZH, Jiang Y, Xu DR. Organ culture of a precious Chinese medicinal plan – Fritillaria unibracteata. Plant Cell Tiss Org Cult 1999; 59: 197-201. http://dx.doi.org/10.1023/A:1006440801337

Tiwari RK, Trivedi M, Guang ZC, Guo GQ, Zheng GC. Genetic transformation of Gentiana macrophylla with Agrobacteriumrhizogenes: growth and production of secoiriDOId glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Rep 2007; 26: 199-210. http://dx.doi.org/10.1007/s00299-006-0236-0

Vinterhalter B, Jankovic T, Sovikin L, Nikolic R, Vinterhalter D. Propagation and xanthone content of Gentianella austriaca shoot cultures. Plant Cell Tiss Org Cult 2008; 94: 329-335. http://dx.doi.org/10.1007/s11240-008-9374-0

Mehrotra S, Kukreja AK, Khanuja SPS, Mishra BN. Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electron J Biotechnol 2008; 11(2): 1-7. http://dx.doi.org/10.2225/vol11-issue2-fulltext-6

Gopi C, Vatsala TM. In vitro studies on effects of plant growth regulators on callus and suspension culture biomass yield from Gymnema sylvestre R.Br. Afr J Biotechnol 2006; 5: 1215-1219.

Misra N, Misra P, Datta SK, Mehrotra S. In vitro biosynthesis of antioxidants from Hemidesmus indicus R.Br. cultures. In Vitro Cell Dev Biol Plant 2005; 41: 285-290. http://dx.doi.org/10.1079/IVP2004627

Kornfeld A, Kaufman PB, Lu CR et al. The production of hypericins in two selected Hypericum perforatum shoot cultures is related to differences in black gland structure. Plant Physiol Biochem 2007; 45: 24-32. http://dx.doi.org/10.1016/j.plaphy.2006.12.009

Phatak SV, Heble MR. Organogenesis and terpenoid synthesis in Mentha arvensis. Fitoterapia 2002; 73(1): 32-39. http://dx.doi.org/10.1016/S0367-326X(01)00347-1

Agarwal M, Kamal R. Studies on flavonoid production using in vitro cultures in Momordica charantia L. Indian J Biotechnol 2007; 6: 277-279.

Khosroushahi AY, Valizadeh M, Ghasempour A, Khosrowshahli M, Naghdibadi H, Dadpour MR. Improved Taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell Biol Int 2006; 30(3): 262-269. http://dx.doi.org/10.1016/j.cellbi.2005.11.004

Wu J, Wang C, Mei X. Stimulation of taxol production and excretion in Taxus spp. cell cultures by rare earth chemical lanthanum. J Biotechnol 2001; 85: 67-73. http://dx.doi.org/10.1016/S0168-1656(00)00383-7

Nguyen T, Eshraghi J, Gonyea G, Ream R, Smith R. Studies on factors influencing stability and recovery of paclitaxel from suspension media and cultures of Taxus cuspidata cv Densiformis by high-performance liquid chromatography. J Chromatogr -A 2001; 911: 55-61. http://dx.doi.org/10.1016/S0021-9673(00)01272-3

Yu KW, Gao WY, Hahn EJ, Paek KY. Jasmonic acid improves Ginsenoside accumulation in adventitious root culture of Panax ginseng. J Biochem Eng 2002; 11: 211-215. http://dx.doi.org/10.1016/S1369-703X(02)00029-3

Park SU, Facchini PJ. Agrobacterium-mediated genetic transformation of California poppy Eschscholzia californica via somatic embryogenesis. Plant Cell Rep 2000; 19: 421-426. http://dx.doi.org/10.1007/s002990050750

Diarra ST, He J, Wang J, Li J. Ethylene treatment improves diosgenin accumulation in in vitro cultures of Dioscorea zingiberensis via upregulation of CAS and HMGR gene expression. Electron J Biotechnol 2013; 16(5): 1-10.

Li B, Dobruchowska JM, Gerrit JG, Dijkhuizen L, Kamerling JP. Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus. Carbohydr Polym, 2013; 91: 314-321. http://dx.doi.org/10.1016/j.carbpol.2012.08.045

Jennewein S, Park H, Dejong JM, Long RM, Bollon AP, Croteau RB. Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in taxol biosynthesis. Biotechnol Bioeng 2005; 89: 588-598. http://dx.doi.org/10.1002/bit.20390

Liao Z, Chen M, Sun X, Tang K. Micropropagation of endangered plant species. Methods Mol Biol 2006; 318: 179-185.

Christen AA, Bland J, Gibson GM. Cell culture as a means to produce taxol. Proc Am Assoc Cancer Res 1989; 30: 566.

Kim JH, Yun JH, Hwang YS, Byun SY, Kim DI. Production of taxol and related taxanes in Taxus brevifolia cell cultures: Effect of sugar. Biotechnol Lett 1995; 17: 101-106. http://dx.doi.org/10.1007/BF00134204

Ketchum REB, Rithner CD, Qiu D, Kim YS, Williams RM, Croteau RB. Taxus metabolites: methyl jasmonates preferentially induces production of taxoids oxygenated at C-13 in Taxus media cell cultures. Phytochem 2003; 62: 901-909. http://dx.doi.org/10.1016/S0031-9422(02)00711-2

Parc G, Canaguier A, Landr P, Hocquemiller R, Chriqui D, Meyer M. Production of taxoids with biological activity by plants and callus cultures from selected Taxus genotypes. Phytochem 2002; 59: 725-730. http://dx.doi.org/10.1016/S0031-9422(02)00043-2

Long RM, Croteau R. Preliminary assessment of the C13- side chain 2’-hydroxylase involved in taxol biosynthesis. Biochem Biophys Res Commun 2005; 338: 410-417. http://dx.doi.org/10.1016/j.bbrc.2005.08.119

Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 2005; 23: 283-333. http://dx.doi.org/10.1016/j.biotechadv.2005.01.003

Pichersky E, Lewinsohn E. Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol 2011; 62: 549-566. http://dx.doi.org/10.1146/annurev-arplant-042110-103814

Tisserat B, Berhow M. Production of pharmaceuticals from Papaver cultivars in vitro. Eng Life Sci 2009; 9: 190-196. http://dx.doi.org/10.1002/elsc.200800100

Palazon J, Moyano E, Bonfill M, Cusido RM, Pinol MT. Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues. Teixeira da Silva, J. A., Eds.; Global Science Books, Ltd: London, UK 2006; pp. 209-221.

Sharma D, Bhatia V, Patil S, Sharma PC. Antimicrobial activity of selected cryptogams from solan region. Int J Biol Pharm Res 2013; 4(6): 448-454.

Srivastava S, Srivastava AK. Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 2007; 27: 29-43. http://dx.doi.org/10.1080/07388550601173918

Hu WW, Yao HU, Zhong JJ. Improvement of Panax notoginseng cell cultures for production of ginseng saponin and polysaccharide by high-density cultivation of pneumatically agitated bioreactors. Biotechnol Prog 2001; 17: 838-846. http://dx.doi.org/10.1021/bp010085n

Debnath M, Malik CP, Bisen PS. Micropropagation: A tool for the production of high quality plant-based medicines. Curr Pharm Biotechnol 2006; 7: 33-49. http://dx.doi.org/10.2174/138920106775789638

Sarin R. Useful metabolites from plant tissue cultures. Biotechnol 2005; 4: 79-93. http://dx.doi.org/10.3923/biotech.2005.79.93

Zhang Q, Rich JO, Cotterill IC, Pantaleone DP, Michels PC. 14-Hydroxylation of opiates: Catalytic direct autoxidation of codeinone to 14-hydroxycodeinone. J Am Chem Soc 2005; 127: 7286-7287. http://dx.doi.org/10.1021/ja051682z

Wang W, Zhong JJ. Manipulation of ginsenoside heterogeneity in cell cultures of Panax notoginseng by addition of jasmonates. J Biosci Bioeng 2002; 93: 48-53. http://dx.doi.org/10.1016/S1389-1723(02)80053-6

Huang SM, Bisogno T, Trevisani M et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. PNAS 2002; 99(12): 8400–8405. http://dx.doi.org/10.1073/pnas.122196999

Vanisree M, Lee C, Nalawade SM, Lin CY, Tasy H. Studies on the production of some important secondary metabolite from medicinal plants by Plant tissue culture. Bot Bull Acad Sin 2004; 45: 1-22.

Dubey NK, Kumar R, Tripathi P. Global promotion of herbal medicine: India’s opportunity. Curr Sci 2004; 80: 37-41.

Eibl R, Eibl D. Plant Tissue Culture Engineering (Focus on Biotechnology), vol 6. Gupta, SD, Ibaraki Y, Eds.; Springer: Berlin-Heidelberg-New York, pp. 2006; 203-227.

Zhu W, Zhu JY, Gleisner R, Pan XJ. On energy consumption for size-reduction and yield from subsequent enzymatic sacchrification of pretreated lodgepole pine. Bioresour Technol 2010; 101(8): 2782-2792. http://dx.doi.org/10.1016/j.biortech.2009.10.076

Ravishankar GA, Suresh B, Giridhar P, Rao SR, Johnson TS. Biotechnological studies on capsicum for metabolite production and plant improvement. In: DE, Amit Krishna ed. Capsicum: The genus Capsicum. Harwood Academic Publishers, UK, 2003; pp. 96-128.

Sharma A, Kumar V, Giridhar P, Ravishankar GA. Induction of in vitro flowering in Capsicum frutescens under the influence of silver nitrate and cobalt chloride and pollen transformation. Plant Biotechnol 2008; 11: 1-8. http://dx.doi.org/10.2225/vol11-issue2-fulltext-8

Ravishankar GA, Ramachandra Rao S. Biotechnological production of phyto-pharmaceuticals. J Biochem Mol Biol Biophys 2000; 4: 73-102.

Sanatombi K, Sharma GJ. Micropropagation of Capsicum frutescens L. using axillary shoot explants. Sci Hort 2007; 113: 96-99. http://dx.doi.org/10.1016/j.scienta.2007.01.020

Padmanabha BV, Chandrashekar M, Ramesha BT et al. Patterns of accumulation of camptothecin, an anti-cancer alkaloid in Nothapodytes nimmoniana Graham, in the Western Ghats, India: Implications for identifying high-yielding sources of the alkaloid. Curr Sci 2006; 90: 95-100.

Lu D, Dong J, Jin H et al. Nitrate reductase-mediated nitric oxide generation is essential for fungal elicitor-induced camptothecin accumulation of Camptotheca acuminata suspension cell cultures. Appl Microbiol Biotechnol 2011; 90(3): 1073-1081. http://dx.doi.org/10.1007/s00253-011-3146-1

Oksman-Caldentey KM, Inze D. Plant cell factories in the post genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 2004; 9: 433-440. http://dx.doi.org/10.1016/j.tplants.2004.07.006

Aslam J, Mujib A, Nasim SA, Sharma MP. Screening of vincristine yield in ex vitro and in vitro somatic embryos derived plantlets of Catharanthus roseus L. (G) Don. Sci Hort 2009; 119: 325-329. http://dx.doi.org/10.1016/j.scienta.2008.08.018

Verma A, Laakso I, Laakso TS, Huhtikangas A, Riekkola ML. A simplified procedure for indole alkaloid extraction from Catharanthus roseus combined with a semi-synthetic production process for vinblastine. Molecule 2007; 12: 1307-1315. http://dx.doi.org/10.3390/12071307

Zhao J, Hu Q, Guo Q, Zhu WH. Effects of stress factors, bioregulators and synthetic precursor on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Appl Microb Biotechnol 2001a; 55: 693- 698. http://dx.doi.org/10.1007/s002530000568

Zhao J, Zhu W, Hu Q. Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzyme Microb Tech 2001b; 28: 673-681. http://dx.doi.org/10.1016/S0141-0229(01)00306-4

Guo ZG, Liu Y, Gong MZ, Chen W, Li WY. Regulation of vinblastine biosynthesis in cell suspension cultures of Catharanthus roseus. Plant Cell Tiss Org Cult 2013; 112(1): 43-54. http://dx.doi.org/10.1007/s11240-012-0213-y

Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS. Bioprocess Considerations for Production of Secondary Metabolites by Plant Cell Suspension Cultures. Biotechnol. Bioprocess Eng 2002; 7: 138-149. http://dx.doi.org/10.1007/BF02932911

Koulman A, Beekman AC, Pras N, Quax WJ. The bioconversion process of deoxypodophyllotoxin with Linum flavum cell cultures. Planta Med 2003; 69: 739-744. http://dx.doi.org/10.1055/s-2003-42785

Sevon N, Oksman-Caldentey KM. Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 2002; 68(10): 859-868. http://dx.doi.org/10.1055/s-2002-34924

Choi PS, Cho DY, Soh WY. Plant regeneration from immature embryo cultures of Vigna unguiculata. Biol Plantarum 2003; 47: 305-308. http://dx.doi.org/10.1023/B:BIOP.0000022272.39625.59

Chen WP, Punja ZK. Transgenic herbicide and disease tolerant carrot (Daucus carota L.) plants obtained through Agrobacterium-mediated transformation. Plant Cell Rep 2002; 20: 929-935. http://dx.doi.org/10.1007/s00299-001-0419-7

Chitty JA, Allen RS, Fist AJ, Larkin PJ. Genetic transformation in commercial Tasmanian cultivars of opium poppy, Papaver somniferum, and movement of transgenic pollen in the field. Funct Plant Biol 2003; 30: 1045-1058. http://dx.doi.org/10.1071/FP03126

Borgio JF. RNA interference (RNAi) technology: a promising tool for medicinal plant research. J Med Plants Res 2009; 3(13): 1176-1183.

Price DRG, Gatehouse JA. RNAi-mediated crop protection against insects. Trends Biotechnol 2008; 26(7): 393-400. http://dx.doi.org/10.1016/j.tibtech.2008.04.004

Larkin PJ, Miller JAC, Allen RS et al. Increasing morphinan alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum. Plant Biotechnol J 2007; 5: 26-37. http://dx.doi.org/10.1111/j.1467-7652.2006.00212.x

Allen RS, Millgate AG, Chitty JA et al. RNAi-mediated replacement of morphine with the non-narcotic alkaloid reticuline in Opium poppy. Nat Biotechnol 2004; 22: 1559-1566. http://dx.doi.org/10.1038/nbt1033

Fujii N, Inui T, Iwasa K, Morishige T, Sato F. Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in cultured California poppy cells. Transgenic Res 2007; 16: 363-375. http://dx.doi.org/10.1007/s11248-006-9040-4

Runguphan W, Maresh JJ, O’Connor SE. Silencing of tryptamine biosynthesis for production of non-natural alkaloids in plant culture. PNAS 2009; 106(33): 13673-13678. http://dx.doi.org/10.1073/pnas.0903393106

Mahmoud SS, Croteau R. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. PNAS 2001; 98: 8915-8920. http://dx.doi.org/10.1073/pnas.141237298

Facchini PJ, Park SU. Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochem 2003; 64: 177-186. http://dx.doi.org/10.1016/S0031-9422(03)00292-9

Mahmoud SS, Williams M, Croteau R. Co-suppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochem 2004; 65: 547-554. http://dx.doi.org/10.1016/j.phytochem.2004.01.005

Frick S, Chitty JA, Kramell R, Schmidt J, Allen RS, Larkin PJ. Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots. Transgenic Res 2004; 13: 607-613. http://dx.doi.org/10.1007/s11248-004-2892-6

Davuluri GR, van Tuinen A, Fraser PD et al. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 2005; 23: 890-895. http://dx.doi.org/10.1038/nbt1108

Underwood BA, Tieman DM, Shibuya K et al. Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiol 2005; 138: 255-266. http://dx.doi.org/10.1104/pp.104.051144

Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC. ODORANT1 regulates fragrance biosynthesis in Petunia flowers. Plant Cell 2005; 17: 1612-1624. http://dx.doi.org/10.1105/tpc.104.028837

Orlova I, Marshall-Colon A, Schnepp J et al. Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell 2006; 18: 3458-3475. http://dx.doi.org/10.1105/tpc.106.046227

Van der Rest B, Danoun S, Boudet AM, Rochange SF. Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. J Exp Bot 2006; 57: 1399-1411. http://dx.doi.org/10.1093/jxb/erj120

Inui T, Tamura K, Fujii N, Morishige T, Sato F. Overexpression of Coptis japonica norcoclaurine 6- O-methyltransferase overcomes the rate-limiting step in benzylisoquinoline alkaloid biosynthesis in cultured Eschscholzia californica. Plant Cell Physiol 2007; 48: 252–262. http://dx.doi.org/10.1093/pcp/pcl062

Dexter R, Qualley A, Kish CM. Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant J 2007; 49: 265-275. http://dx.doi.org/10.1111/j.1365-313X.2006.02954.x

Wróbel-Kwiatkowska M, Starzycki M, Zebrowski J, Oszmiański J, Szopa J. Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties. J Biotechnol 2007; 128: 919-934. http://dx.doi.org/10.1016/j.jbiotec.2006.12.030

Katsumoto Y, Fukuchi-Mizutani M, Fukui Y et al. Engineering of the Rose Flavonoid Biosynthetic Pathway Successfully Generated Blue-Hued Flowers Accumulating Delphinidin. Plant Cell Physiol 2007; 48(11): 1589-1600. http://dx.doi.org/10.1093/pcp/pcm131

Xiao D, Singh SV. z-Guggulsterone, a constituent of Ayurvedic medicinal plant Commiphora mukul, inhibits angiogenesis in vitro and in vivo. Mol Cancer Ther 2008; 7(1): 171-180. http://dx.doi.org/10.1158/1535-7163.MCT-07-0491

Song J, Wang Z. RNAi-mediated suppression of the phenyl anine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res 2011; 124:183-192. http://dx.doi.org/10.1007/s10265-010-0350-5

Lin X, Xiao M, Luo Y, Wang J, Wang H. The effect of RNAi-induced silencing of FaDFR on anthocyanin metabolism in strawberry (Fragaria x ananassa) fruit. Sci Hort 2013; 160: 123-128. http://dx.doi.org/10.1016/j.scienta.2013.05.024

Sharafi A, Sohi HH, Mousavi A. Metabolic engineering of morphinan alkaloids by over-expression of codeinone reductase in transgenic hairy roots of Papaver bracteatum, the Iranian poppy. Biotechnol Lett 2013; 35: 445-453. http://dx.doi.org/10.1007/s10529-012-1080-7

Cankar K, Jongedijk E, Klompmaker M. (+)-Valencene production in Nicotiana benthamiana is increased by down regulation of competing pathways. Biotechnol J 2015; 10(1): 180-189. http://dx.doi.org/10.1002/biot.201400288

Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression pattern with a complementary DNA microarray. Science 1995; 270: 467-470. http://dx.doi.org/10.1126/science.270.5235.467

Siahsar B, Rahimi M, Tavassoli A, Raissi AS. Application of Biotechnology in Production of Medicinal Plants. Am-Eurasian J Agric Environ Sci 2011; 11 (3): 439-444.

Christen Y, Olano-Martin E, Packer L. Egb761 in the postgenomics era: New tools from molecular biology for the study of complex products such as Ginkgo biloba extract. Cell Mol Bio 2002; 48: 593-599.

Lizuka N, Masaaki O, Yamamoto K et al. Identification of common or distinct genes related to Anti-tumour activities of a medicinal herb and its major component by oligonucleotide microarray. Int J Cancer 2003; 107: 666-672. http://dx.doi.org/10.1002/ijc.11452

Tsoi PY, Wu HS, Wong MS, Chen SI, Fong WF. Genotyping and species identification of Fritillaria by DNA chip technology. Acta Pharm Sin 2003; 4: 185-190.

Khan MY, Aliabbas S, Kumar V, Rajkumar S. Recent advances in medicinal plant biotechnology. Indian J Biotechnol 2009; 8: 9-22.

Lee MH, Jeong JH, Seo JW et al. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 2004; 45(8): 976-984. http://dx.doi.org/10.1093/pcp/pch126

Niggeweg R, Michael AJ, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 2004; 22 (6): 746-754. http://dx.doi.org/10.1038/nbt966

Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H. RNA interference: Producing decaffeinated coffee plants. Nature 2003; 423: 823. http://dx.doi.org/10.1038/423823a

Breyne P, Zabeau M. Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biol 2001; 4: 136-142. http://dx.doi.org/10.1016/S1369-5266(00)00149-7

Breyne P, Dreesen R, Cannoot B et al. Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Genet Genomics 2003; 269: 173-179.

Goossens A, Häkkinen ST, Laakso I et al. A functional genomics approach toward the understanding of secondary metabolism in plant cells. PNAS 2003; 100: 8595-8600. http://dx.doi.org/10.1073/pnas.1032967100

Gantet P, Memelink J. Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol Sci 2002; 23: 563-569. http://dx.doi.org/10.1016/S0165-6147(02)02098-9

Doran PM. Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 2000; 11: 199-204. http://dx.doi.org/10.1016/S0958-1669(00)00086-0

Sato F, Hashimoto T, Hachiya A, et al. Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci USA 2001; 98(1): 367-72. http://dx.doi.org/10.1073/pnas.98.1.367

Downloads

Published

2016-10-04

How to Cite

Tripathi, N., Sapre, S., Mishra, I. G., Prakash, V., & Tiwari, S. (2016). Bioactive Natural Products from Plants and Biotechnological Approaches for their Production. International Journal of Biotechnology for Wellness Industries, 5(3), 91–110. https://doi.org/10.6000/1927-3037.2016.05.03.4

Issue

Section

Articles