The Bivariate Erlang and its Application in Modeling Recurrence Times of Kidney Dialysis Data
DOI:
https://doi.org/10.6000/1929-6029.2014.03.02.2Keywords:
Bivariate models, Erlang, exponential, Dirac deltaAbstract
Recent advances in computer modeling allows us to find closer fits to data. Our emphasis is on the interdependence between occurrence at kidney dialysis. The interdependence between kidney dialysis occurrences is modelled by a bivariate exponential that we propose in this article. The application is shown on the McGilchrist and Aisbett kidney data set with the use of the exponential distribution. The proposed bivariate exponential model has exponential marginal densities, correlated via a latent random variables and with finite probability of simultaneous occurrence. Extension of the model to a bivariate Erlang type distribution with same shape parameter is presented.
References
Marshall AW, Olkin I. A Multivariate Exponential Distribution. J Am Stat Assoc 1967; 63: 30-44. http://dx.doi.org/10.1080/01621459.1967.10482885 DOI: https://doi.org/10.1080/01621459.1967.10482885
Coresh J, Selvin E, Stevens LA, et al. Prevalence of Chronic Kidney Disease in the United States. J Am Med Assoc 2007; 298(17): 2038-47. http://dx.doi.org/10.1001/jama.298.17.2038 DOI: https://doi.org/10.1001/jama.298.17.2038
Harris A, Cooper BA, Jing Li J, et al. Cost-Effectiveness of Initiating Dialysis Early: A Randomized Controlled Trial. Am J Kidney Diseases 2011; 57(5): 707-15. http://dx.doi.org/10.1053/j.ajkd.2010.12.018 DOI: https://doi.org/10.1053/j.ajkd.2010.12.018
Csorgo S, Welsh AH. Testing for Exponential and Marshall-Olkin Distributions. J Stat Plan Infer 1989; 23; 287-300. http://dx.doi.org/10.1016/0378-3758(89)90073-6 DOI: https://doi.org/10.1016/0378-3758(89)90073-6
Zhao P, Balakrishnan N. Ordering Properties of Convolutions of heterogeneous Erlang and Pascal Random Variables. Stat Probability Lett 2010; 80: 969-74. http://dx.doi.org/10.1016/j.spl.2010.02.010 DOI: https://doi.org/10.1016/j.spl.2010.02.010
Iyer SK, Manjunath D. Correlated Bivariate Sequence for queueing and reliability applications. Commun Stat 2004; 33: 331-50. http://dx.doi.org/10.1081/STA-120028377 DOI: https://doi.org/10.1081/STA-120028377
Iyer SK, Manjunath D, Manivasakan R. Bivariate Exponential Distributions Using Linear Structures. Sankhya 2002; 64(A): 156-66.
McGilchrist CA, Aisbett CW. Regression with Frality in Survival Analysis. Biometrics 1991; 47; 461-66. http://dx.doi.org/10.2307/2532138 DOI: https://doi.org/10.2307/2532138
Abramowitz M, Stegun IA. Handbook of Mathematical Functions, Selected Government Publications, Chapter 6, New York, Dover 1972.
Hougaard P. A class of multivariate failure time distributions. Biometrika 1986; 73(3): 671-78. DOI: https://doi.org/10.1093/biomet/73.3.671
http://www.dx.doi.org/10.1093/biomet/73.3.671
Pickands J. Multivariate Extreme Value Distributions. Bull Int Stat Instit 1981; 49: 859-78.
Johnson RA, Evans JW, Green DW. Some Bivariate Distributions for Modeling the strength properties of Lumber 1999; US Department of Agriculture, Forest Service, Forest Products laboratory, Res. Pap. pp. 11.
Diawara N, Indika SHS, Maboudou-Tchao EM. The Distribution of the Sum of Independent Product of Bernoulli and Exponential. Am J Math Manag Sci 2013; 32(1): 75-89.
Carpenter M, Diawara N, Han Y. A New Class Of Bivariate Survival and Reliability Models. Am J Math Manag Sci 2006; 26: 163-84. DOI: https://doi.org/10.1080/01966324.2006.10737665
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Norou Diawara, S.H. Sathish Indika, Melva Grant, Edgard M. Maboudou-Tchao
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .