LQAS in Health Monitoring – Insights from a Bayesian Perspective

Authors

  • David Kwamena Mensah African Institute for Mathematical Sciences, Currently National University of Singapore
  • Paul Hewson School of Computing and Mathematics, Plymouth University, Plymouth PL4 8AA, UK

DOI:

https://doi.org/10.6000/1929-6029.2014.03.04.8

Keywords:

Cluster Sampling, Bayesian Hierarchical Model, Overdisperson, Hypergeometric distribution, Classification.

Abstract

Lot Quality Assurance Sampling (LQAS) is strongly advocated for use in monitoring the health status of populations, largely in the developing world. It is advocated both for the monitoring of small areas as well as for making global assessments of the health status of a larger region. This paper contrasts the interpretation offered by LQAS methods to that offered by Bayesian hierarchical models. It considers applications to previously reported local area data and presents a reanalysis of published data on vaccine coverage in Peru as well as HTLV-1 prevalence in Benin. The desirability of using Bayesian methods in the field may be challenged; nevertheless this work amplifies previously expressed concerns about the way the LQAS method can be used. It raises questions about the ability of the LQAS approach to make, sufficiently often, the correct decisions in order to be useful in monitoring health programmes at the local level.

Author Biographies

David Kwamena Mensah, African Institute for Mathematical Sciences, Currently National University of Singapore

Mathematical Sciences

Paul Hewson, School of Computing and Mathematics, Plymouth University, Plymouth PL4 8AA, UK

Computing and Mathematics

References

Robertson SE, Valadez JJ. Global review of healthcare surveys using Lot Quality Assurance Sampling (LQAS), 1984-2004. Soc Sci Med 2006; 63: 1648-1660. http://dx.doi.org/10.1016/j.socscimed.2006.04.011 DOI: https://doi.org/10.1016/j.socscimed.2006.04.011

Dodge HF, Romig H A method of sampling inspection. Bell System Technical Journal 1929; 8: 613-631. http://dx.doi.org/10.1002/j.1538-7305.1929.tb01240.x DOI: https://doi.org/10.1002/j.1538-7305.1929.tb01240.x

Neyman J. Pearson: On the problem of the most efficient tests of statistical hypotheses Philos Trans R Soc Lond A 1933; 231: 289-337. http://dx.doi.org/10.1098/rsta.1933.0009 DOI: https://doi.org/10.1098/rsta.1933.0009

Houinato D, Preux PM, Charriere B, Massit B, Avode G, Denis F, Dumas M, Boutros-Toni F, Salamon R. Interest of LQAS method in a survey of HTLV-1 infection in Benin (West Africa). J Clin Epidemiol 2002; 55: 192-196. http://dx.doi.org/10.1016/S0895-4356(01)00463-2 DOI: https://doi.org/10.1016/S0895-4356(01)00463-2

Deitchler M, Valadez JJ, Egge K, Fernandez S, Hennigan M. A field test of three LQAS designs to assess the prevalence of acute malnutrition. Int J Epidemiol 2007; 36: 858-864. http://dx.doi.org/10.1093/ije/dym092 DOI: https://doi.org/10.1093/ije/dym092

Garner P, Smith GD. Information for decision making: lot quality assurance sampling in the spotlight. Int J Epidemiol 2010; 39: 5-6. http://dx.doi.org/10.1093/ije/dyq006 DOI: https://doi.org/10.1093/ije/dyq006

Olives C, Pagano M. Bayes-LQAS: classifying the prevalence of global acute malnutrition. Emerg Themes Epidemiol 2010; 7: 3. http://dx.doi.org/10.1186/1742-7622-7-3 DOI: https://doi.org/10.1186/1742-7622-7-3

Hinde J, Demetrio CG. Overdispersion: models and estimation. Comput Stat Data Anal 1998; 27: 151-170. http://dx.doi.org/10.1016/S0167-9473(98)00007-3 DOI: https://doi.org/10.1016/S0167-9473(98)00007-3

Lanata CF, Stroh G, Black RE, Gonzales H. An evaluation of Lot Quality Assurance Sampling to monitor and improve immunization coverage. Int J Epidemiol 1990; 19: 1086-1090. [http://ije.oxfordjournals.org/content/19/4/1086.short. 00043] DOI: https://doi.org/10.1093/ije/19.4.1086

Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. Boca Raton: Chapman and Hall / CRC 2nd edition 2003. DOI: https://doi.org/10.1201/9780429258480

Patil A, Huard D, Fonnesbeck CJ. PyMC: Bayesian Stochastic Modeling in Python. J Stat Softw 2010; 35: 1-81. DOI: https://doi.org/10.18637/jss.v035.i04

Cowles MK, Carlin BP. Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 1996; 91: 883-904. http://dx.doi.org/10.1080/01621459.1996.10476956 DOI: https://doi.org/10.1080/01621459.1996.10476956

Rhoda DA, Fernandez SA, Fitch DJ, Lemeshow S. LQAS: user beware. Int J Epidemiol 2010; 39: 60-69. http://dx.doi.org/10.1093/ije/dyn366 DOI: https://doi.org/10.1093/ije/dyn366

Plummer M. Penalized loss functions for Bayesian model comparison. Biostatistics 2008; 9: 523-539. http://dx.doi.org/10.1093/biostatistics/kxm049 DOI: https://doi.org/10.1093/biostatistics/kxm049

Olives C, Pagano M. Choosing a design to fit the situation: how to improve specificity and positive predictive values using Bayesian lot quality assurance sampling. Int J Epidemiol 2013. [http://ije.oxfordjournals.org/content/ early/2013/02/01/ije.dys230.short] DOI: https://doi.org/10.1093/ije/dys230

Johnson NL, Kotz S, Wu XZ. Inspection errors for attributes in quality control. 1991; Volume 44 CRC Press. DOI: https://doi.org/10.1007/978-1-4899-3196-2

Bilukha O, Blanton C. Interpreting results of cluster surveys in emergency settings: is the LQAS test the best option Emerg Themes Epidemiol 2008; 5: 25. http://dx.doi.org/10.1186/1742-7622-5-25 DOI: https://doi.org/10.1186/1742-7622-5-25

Pezzoli L, Conteh K, Kamara W, Gacic-Dobo M, Ronveaux O, Perea WA, Lewis RF. Intervene before leaving: clustered Lot Quality Assurance Sampling to monitor vaccination coverage at health district level before the end of a yellow fever and measles vaccination campaign in Sierra Leone in 2009. BMC Public Health 2012; 12: 415. http://dx.doi.org/10.1186/1471-2458-12-415 DOI: https://doi.org/10.1186/1471-2458-12-415

Myatt M, Limburg H, Minassian D, Katyole D. Field trial for the applicability of Lot Quality Assurance Sampling survey method for rapid assessment of prevalence of active trachoma. Bulletin of the World Health Organisation 2003; 81: 877-885.

Downloads

Published

2014-11-06

How to Cite

Mensah, D. K., & Hewson, P. (2014). LQAS in Health Monitoring – Insights from a Bayesian Perspective. International Journal of Statistics in Medical Research, 3(4), 392–403. https://doi.org/10.6000/1929-6029.2014.03.04.8

Issue

Section

General Articles