Nonparametric and Semiparametric Regression Analysis of Group Testing Samples

Authors

  • Mingyu Li Celgene Corporation, 110 Allen Road, Basking Ridge, NJ 07920, USA
  • Minge Xie Department of Statistics and Biostatistics, Rutgers University, Hill Center for Mathematical Sciences, Piscataway, NJ 08854, USA

DOI:

https://doi.org/10.6000/1929-6029.2012.01.01.06

Keywords:

Group testing, EM algorithm, Smoothing, Generalized linear models, Penalized maximum likelihood

Abstract

This paper develops a general methodology of nonparametric and semiparametric regression for group testing data, relating group testing responses to covariates at individual level. We fit nonparametric and semiparametric models and obtain estimators of the parameters and the nonparametric regression function by maximizing penalized likelihood function. For implementation, we develop a modified EM algorithm with individual responses as complete data and observed group testing responses as observed data. Numerical results based on simulations and chlamydia data collected in a Nebraska study show that our estimation methods perform well for estimating both the individual probability of positive outcome and the prevalence rate in the population

Author Biography

Minge Xie, Department of Statistics and Biostatistics, Rutgers University, Hill Center for Mathematical Sciences, Piscataway, NJ 08854, USA

Director, Office of Statistical Consulting Department of Statistics and Biostatistics Rutgers

References

Dorfman R. The detection of defective members of large populations. Ann Math Statist 1943; 14(4): 436-40. http://dx.doi.org/10.1214/aoms/1177731363 DOI: https://doi.org/10.1214/aoms/1177731363

Stramer S, Glynn S, Kleinman S, et al. Detection of HIV-1 and HCV infections among antibody-negative blood donors by nucleic acid-amplication testing. N Engl J Med 2004; 351: 760-68. http://dx.doi.org/10.1056/NEJMoa040085 DOI: https://doi.org/10.1056/NEJMoa040085

Xie M, Tatsuoka K, Sacks J, Young S. Group testing with Blockers and synergism. J Am Statist Assoc 2001; 96: 92-101. http://dx.doi.org/10.1198/016214501750333009 DOI: https://doi.org/10.1198/016214501750333009

Remlinger K, Hughes-Oliver J, Young S, Lam R. Statistical design of pools using optimal coverage and minimal collision. Technometrics 2006; 48: 133-44. http://dx.doi.org/10.1198/004017005000000481 DOI: https://doi.org/10.1198/004017005000000481

Lindan C, Mathur M, Kumta S, et al. Utility of pooled urine specimens for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in men attending public sexually transmitted infection clinics in Mumbai, India, by PCR. J Clin Microbiol 2005; 43(4): 1674-77. http://dx.doi.org/10.1128/JCM.43.4.1674-1677.2005 DOI: https://doi.org/10.1128/JCM.43.4.1674-1677.2005

Rours G, Verkooyen RP, Willemse H, et al. Use of pooled urine samples and automated DNA isolation to achieve improved sensitivity and cost-effectiveness of large-scale testing for Chlamydia trachomatis in pregnant women. J Clin Microbiol 2005; 43(9): 4684-90. http://dx.doi.org/10.1128/JCM.43.9.4684-4690.2005 DOI: https://doi.org/10.1128/JCM.43.9.4684-4690.2005

Du D, Hwang FK. Pooling Design and Nonadaptive Group Testing: Important Tools for DNA Sequencing. World Scientic Publishing Company 2006. DOI: https://doi.org/10.1142/6122

Yao YC, Hwang FK. On optimal nested group testing algorithms. J Stat Plan Infer 1990; 24(2): 167-75. http://dx.doi.org/10.1016/0378-3758(90)90039-W DOI: https://doi.org/10.1016/0378-3758(90)90039-W

Hughes-Oliver JM, Swallow WH. A two-stage adaptive group-testing procedure for estimating small proportions. J Am Statist Assoc 1994; 89: 982-93. http://dx.doi.org/10.1080/01621459.1994.10476832 DOI: https://doi.org/10.1080/01621459.1994.10476832

Phatarfod RM, Sudbury A. The use of a square array scheme in blood testing. Stat Med 1994; 13(22): 2337-43. http://dx.doi.org/10.1002/sim.4780132205 DOI: https://doi.org/10.1002/sim.4780132205

Brookmeyer R. Analysis of multistage pooling studies of biological specimens for estimating disease incidence and prevalence. Biometrics 1999; 55(2): 608-12. http://dx.doi.org/10.1111/j.0006-341X.1999.00608.x DOI: https://doi.org/10.1111/j.0006-341X.1999.00608.x

Chen CL, Swallow WH. Using group testing to estimate a proportion, and to test the binomial model. Biometrics 1990; 46: 1035-46. http://dx.doi.org/10.2307/2532446 DOI: https://doi.org/10.2307/2532446

Vansteelandt S, Goetghebeur E, Verstraeten T. Regression models for disease prevalence with diagnostic tests on pools of serum samples. Biometrics 2000; 56(4): 1126-33. http://dx.doi.org/10.1111/j.0006-341X.2000.01126.x DOI: https://doi.org/10.1111/j.0006-341X.2000.01126.x

Huang X, Tebbs JM. On latent-variable model misspecification in structural measurement error models for binary response. Biometrics 2009; 65: 710-18. http://dx.doi.org/10.1111/j.1541-0420.2008.01128.x DOI: https://doi.org/10.1111/j.1541-0420.2008.01128.x

Gastwirth JL, Hammick PA. Estimation of the prevalence of a rare disease, preserving the anonymity of the subjects by group testing: application to estimating the prevalence of aids antibodies in blood donors. J Stat Plan Infer 1989; 22: 15-27. http://dx.doi.org/10.1016/0378-3758(89)90061-X DOI: https://doi.org/10.1016/0378-3758(89)90061-X

Xie M. Regression analysis of group testing samples. Stat Med 2001; 20(13): 1957-69. http://dx.doi.org/10.1002/sim.817 DOI: https://doi.org/10.1002/sim.817

Chen P, Tebbs JM, Bilder CR. Group testing regression models with fixed and random effects. Biometrics 2009; 65(4): 1270-78. http://dx.doi.org/10.1111/j.1541-0420.2008.01183.x DOI: https://doi.org/10.1111/j.1541-0420.2008.01183.x

Huang, X. An improved test of latent-variable model misspecification in structural measurement error models for group testing data. Stat Med 2009; 28: 3316-27. http://dx.doi.org/10.1002/sim.3698 DOI: https://doi.org/10.1002/sim.3698

Green PJ, Silverman BW. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach. Champman & Hall 1994. DOI: https://doi.org/10.1007/978-1-4899-4473-3

Green PJ. On use of the EM algorithm for penalized likelihood estimation. J R Stat Soc B 1990; 52(3): 443-52. DOI: https://doi.org/10.1111/j.2517-6161.1990.tb01798.x

Bilder CR, Tebbs JM. Bias, efficiency, and agreement for group-testing regression models. J Stat Comput Sim 2009; 79(1): 67-80. http://dx.doi.org/10.1080/00949650701608990 DOI: https://doi.org/10.1080/00949650701608990

Gu C. Cross-validating non-gaussian data. J Comput Graph Stat 1992; 1(2): 169-79. DOI: https://doi.org/10.1080/10618600.1992.10477012

Downloads

Published

2012-10-02

How to Cite

Li, M., & Xie, M. (2012). Nonparametric and Semiparametric Regression Analysis of Group Testing Samples. International Journal of Statistics in Medical Research, 1(1), 60–72. https://doi.org/10.6000/1929-6029.2012.01.01.06

Issue

Section

General Articles