Study on Temporal Effects of Urban Malaria Incidences

Authors

  • Krishnendra S. Ganguly Birla Institute of Technology, Mesra, India
  • Soumita Modak Department of Statistics, University of Calcutta, Kolkata, India
  • Krishna S. Ganguly Kolkata Municipal Corporation, Kolkata, India
  • Asis K. Chattopadhyay Department of Statistics, University of Calcutta, Kolkata, India

DOI:

https://doi.org/10.6000/1929-6029.2016.05.02.6

Keywords:

Malaria, Spatio-temporal variation, Time series model, Urban

Abstract

In Africa and Asia Malaria is considered to be the most widespread vector-borne disease taking lives of many people and specially affecting children. Many parts of India are significantly affected by malaria over a long period of time. Kolkata is one of the Metropolitan cities in India where the seasonal effect of malaria is very common. In the present work attempts have been made to study temporal variation of urban malaria incidences using time series model on the basis of a large survey conducted by the Kolkata Municipal Corporation. It is found that the proposed time series model can be used successfully for prediction purpose.

References

The Global Malaria Action Plan For a Malaria Free World” - The Roll Back Malaria Partnership, World Health Organization, Geneva, Switzerland.

Pierre-Louis A-M, Qamruddin J, Espinosa I, Challa S. The Malaria Control Success Story. Chapter 23: 417-432.

Gallup JL, Sachs J. The Economic Burden of Malaria. American Journal of Tropical Medicine and Hygiene 2001; 64(Suppl. 1): 8596. DOI: https://doi.org/10.4269/ajtmh.2001.64.85

Murray CJL, Lopez AD. Evidence-based health policy lessons from the Global Burden of Disease Study. Science 1996; 274: 740743. http://dx.doi.org/10.1126/science.274.5288.740 DOI: https://doi.org/10.1126/science.274.5288.740

Murray CJL, Lopez AD. The Global Burden of Disease 1990-2020: alternative projections of mortality and disability by cause for eight regions. Lancet 1997; 349: 14981504. DOI: https://doi.org/10.1016/S0140-6736(96)07492-2

Breman JG. The ears of the hippopotamus: manifestations, determinants and estimation of the malaria burden. Am J Trop Med Hyg 2001; 64(Suppl 1): 11. DOI: https://doi.org/10.4269/ajtmh.2001.64.1

Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falci-parum malaria. Nature 2005; 434: 214217. DOI: https://doi.org/10.1038/nature03342

Kondrachine AV. Malaria in WHO Southeast Asia Region. Indian J Malariol 1992; 29: 129160.

Mendis K, Sina BJ, Marchesini P, Carter R. The neglected burden of Plasmodium Vivax malaria. Am J Trop Med Hyg 2001; 64: 97106. DOI: https://doi.org/10.4269/ajtmh.2001.64.97

Nihei N, Hashida Y, Kobayashi M, Ishii A. Analysis of malaria endemic areas on the Indochina Peninsula using remote sensing. Jpn J Infect Dis 2002; 55: 160-166.

Klinkenberg E, HoekW, Amerasinghe FP. A malaria risk analysis in an irrigated area in Sri Lanka. Acta Trop 2004; 89: 215-225. http://dx.doi.org/10.1016/j.actatropica.2003.08.007 DOI: https://doi.org/10.1016/j.actatropica.2003.08.007

Leonardo LR, Rivera PT, Crisostomo BA, Sarol JN, Bantayan NC, Tiu WU, Bergquist NR. A study of the environmental determinants of malaria and schistosomiasis in the Philippines using Remote Sensing and Geographic Information Systems. Parassitologia 2005; 47: 105-114.

Zhou G, Sirichaisinthop J, Sattabongkot J, Jones J, Bjornstad ON, Yan G, Cui L. Spatio-temporal distribution of Plasmodium falciparum and P. vivax malaria in Thailand. Am J Trop Med Hyg 2005; 72: 256-262. DOI: https://doi.org/10.4269/ajtmh.2005.72.256

Childs DZ, Cattadori IM, Suwonkerd W, Prajakwong S, Boots M. Spatiotemporal patterns of malaria incidence in northern Thailand. Trans R Soc Trop Med Hyg 2006; 100: 623-631. http://dx.doi.org/10.1016/j.trstmh.2005.09.011 DOI: https://doi.org/10.1016/j.trstmh.2005.09.011

Ceccato P, Connor SJ, Jeanne I, Thomson MC. Application of geographical information systems and remote sensing technologies for assessing and monitoring malaria risk. Parassitologia 2005; 47: 81-96.

Rogers DJ, Randolph SE, Snow RW, Hay SI. Satellite imagery in the study and forecast of malaria. Nature 2002; 415: 710-715. http://dx.doi.org/10.1038/415710a DOI: https://doi.org/10.1038/415710a

Abeku TA, Hay SI, Ochola S, Langi P, Beard B, de Vlas SJ, Cox J. Malaria epidemic early warning and detection in African highlands. Trends Parasitol 2004; 20: 400-405. http://dx.doi.org/10.1016/j.pt.2004.07.005 DOI: https://doi.org/10.1016/j.pt.2004.07.005

Thomson MC, Connor SJ. The development of Malaria Early Warning Systems for Africa. Trends Parasitol 2001; 17: 438-445. http://dx.doi.org/10.1016/S1471-4922(01)02077-3 DOI: https://doi.org/10.1016/S1471-4922(01)02077-3

Cox J, Abeku TA. Early warning systems for malaria in Africa: from blueprint to practice. Trends Parasitol 2007; 23: 243-246. http://dx.doi.org/10.1016/j.pt.2007.03.008 DOI: https://doi.org/10.1016/j.pt.2007.03.008

Abeku TA, de Vlas SJ, Borsboom G, Teklehaimanot A, Kebede A, Olana D, van Oortmarssen GJ, Habbema JD. Forecasting malaria incidence from historical morbidity patterns in epidemic-prone areas of Ethiopia: a simple seasonal adjustment method performs best. Trop Med Int Health 2002; 7: 851-857. http://dx.doi.org/10.1046/j.1365-3156.2002.00924.x DOI: https://doi.org/10.1046/j.1365-3156.2002.00924.x

Hay SI, Were EC, Renshaw M, Noor AM, Ochola SA, Olusanmi I, Alipui N, Snow RW. Forecasting, warning, and detection of malaria epidemics: a case study. Lancet 2003; 361: 1705-1706. http://dx.doi.org/10.1016/S0140-6736(03)13366-1 DOI: https://doi.org/10.1016/S0140-6736(03)13366-1

Thomson M, Indeje M, Connor S, Dilley M, Ward N. Malaria early warning in Kenya and seasonal climate forecasts. Lancet 2003; 362: 580. http://dx.doi.org/10.1016/S0140-6736(03)14135-9 DOI: https://doi.org/10.1016/S0140-6736(03)14135-9

Bouma MJ, Kaay HJ. The El Nino Southern Oscillation and the historic malaria epidemics on the Indian subcontinent and Sri Lanka: an early warning system for future epidemics? Trop Med Int Health 1996; 1: 8696. http://dx.doi.org/10.1046/j.1365-3156.1996.d01-7.x DOI: https://doi.org/10.1046/j.1365-3156.1996.d01-7.x

Archie CA Clements, Adrian G Barnett, Zhang W Cheng, Robert W Snow and Hom N Zhou: Space-time variation of malaria incidence in Yunnan province, China, Malaria Journal 2009; 8 180. http://dx.doi.org/10.1186/1475-2875-8-180 DOI: https://doi.org/10.1186/1475-2875-8-180

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 2005; 25: 1965-1978. http://dx.doi.org/10.1002/joc.1276 DOI: https://doi.org/10.1002/joc.1276

Census of India [http://censusindia.gov.in/] website.

Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 2004; 4(6): 327-336. http://dx.doi.org/10.1016/S1473-3099(04)01043-6

Joshi PL, Chandra R, Bhattacharya M, Vaish HC. Validity of using slide positivity rate (SPR) in identification of high risk malarious segments in rural areas. The Journal of Communicable Diseases 1997; 29(1): 41-45.

Ceesay SJ, Casals-Pascual C, Erskine J, Anya SE, Duah NO, Fulford AJ, Sesay SS, Abubakar I, Dunyo S, Sey O, et al. Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis. Lancet 2008; 372(9649): 1545-1554. http://dx.doi.org/10.1016/S0140-6736(08)61654-2 DOI: https://doi.org/10.1016/S0140-6736(08)61654-2

O’Meara WP, Bejon P, Mwangi TW, Okiro EA, Peshu N, Snow RW, Newton CR, Marsh K. Effect of a fall in malaria transmission on morbidity and mortality in Kilifi, Kenya. Lancet 2008; 372(9649): 1555-1562. http://dx.doi.org/10.1016/S0140-6736(08)61655-4 DOI: https://doi.org/10.1016/S0140-6736(08)61655-4

Jensen TP, Bukirwa H, Njama-Meya D, Francis D, Kamya MR, Rosenthal PJ, Dorsey G. Use of the slide positivity rate to estimate changes in malaria incidence in a cohort of Ugandan children. Malaria Journal 2009; 8: 213. http://dx.doi.org/10.1186/1475-2875-8-213

Kendall M, Stuart A. The Advanced Theory of Statistics, 1983; Vol. 3: Griffin. pp. 410-414.

Chatfield C. The Analysis of Time Series: An Introduction (Fourth Edition ed.). New York, NY: Chapman & Hall 1989.

Box GEP, Jenkins GM, Reinsel GC. Time Series Analysis: Forecasting and Control, 4th Edition 2008. DOI: https://doi.org/10.1002/9781118619193

Aho K, Derryberry D, Peterson T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 2014; 95: 631-636. DOI: https://doi.org/10.1890/13-1452.1

Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC in Model Selection. Sociological Methods & Research 2004; 33: 261-304. DOI: https://doi.org/10.1177/0049124104268644

Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York, Springer-Verlag, 2002.

Ljung GM, Box GEP. On a measure of lack of fit in time series models. Biometrika 1978; 65: 297-303. http://dx.doi.org/10.1093/biomet/65.2.297 DOI: https://doi.org/10.1093/biomet/65.2.297

Breman JG, Holloway CN. Malaria surveillance counts. Am J Trop Med Hyg 2007; 77(6 Suppl): 36-47. DOI: https://doi.org/10.4269/ajtmh.77.6.suppl.36

World Health Organization: World malaria report. Technical document 2008. WHO/HTM/GMP/2008.1.

Cibulskis RE, Bell D, Christophel EM, Hii J, Delacollette C, Bakyaita N, Aregawi MW. Estimating trends in the burden of malaria atcountry level. Am J Trop Med Hyg 2007; 77(6 Suppl): 133-137. DOI: https://doi.org/10.4269/ajtmh.77.6.suppl.133

Roberts DR, Laughlin LL, Hsheih P, Legters LJ. DDT, Global strategies, and a malaria control crisis in South America. Emerg Infect Dis 1997; 3: 295. http://dx.doi.org/10.3201/eid0303.970305 DOI: https://doi.org/10.3201/eid0303.970305

Jensen TP, Bukirwa H, Njama-Meya D, Francis D, Kamya MR, Rosenthal P, Dorsey G. Use of the slide positivity rate to estimate changes in malaria incidence in a cohort of Ugandan children. Malar J 2009; 8: 213. http://dx.doi.org/10.1186/1475-2875-8-213 DOI: https://doi.org/10.1186/1475-2875-8-213

MetzgerW, Giron A, Vivas-Martnez S, Gonzlez J, Charrasco A, Mordmller B, Magris M. A rapid malaria appraisal in the Venezuelan Amazon. Malar J 2009; 8: 291. http://dx.doi.org/10.1186/1475-2875-8-291 DOI: https://doi.org/10.1186/1475-2875-8-291

Subbarao SK, Vasantha K, Raghavendra K, Sharma V, Sharma G. Anopheles culicifacies: siblings species composition and its relationship to malaria incidence. J Am Mosq Control Assoc 1988; 4: 29.

Montanari R, Bangali A, Talukder K, Baqui A, Maheswary N, Gosh A, Rahman M, Mahmood A. Three case definitions of malaria and their effect on diagnosis, treatment and surveillance in Cox’s Bazar district, Bangladesh. Bull World Health Organ 2001; 79: 648-656.

Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 2004; 4: 327-336. http://dx.doi.org/10.1016/S1473-3099(04)01043-6 DOI: https://doi.org/10.1016/S1473-3099(04)01043-6

Lee PW, Liu CT, Rampao H, do Rosario V, Shaio MF. Pre-elimination of malaria on the island of Prncipe. Malar J 2010; 9: 26. http://dx.doi.org/10.1186/1475-2875-9-26 DOI: https://doi.org/10.1186/1475-2875-9-26

Roy SB, Sarkar RR, Sinha S. Theoretical investigation of malaria prevalence in two Indian cities using the response surface method. Malar J 2011; 10: 301. http://dx.doi.org/10.1186/1475-2875-10-301 DOI: https://doi.org/10.1186/1475-2875-10-301

Joshi PL, Chandra R, Bhattacharya M, Vaish HC. Validity of using slide positivity rate (SPR) in identification of high risk malarious segments in rural areas. J Commun Dis 1997; 29: 41.

China Malaria Elimination Plan [http:/ / www.moh.gov.cn/ publicfiles/ business/ htmlfiles/ mohjbyfkzj/ s3593/ 201005/ 47529.htm] website

China National Malaria Office of Global Fund: Management and technique program in high malaria transmission areas in China, Shanghai 2003.

Downloads

Published

2016-06-08

How to Cite

S. Ganguly, K., Modak, S., S. Ganguly, K., & K. Chattopadhyay, A. (2016). Study on Temporal Effects of Urban Malaria Incidences. International Journal of Statistics in Medical Research, 5(2), 120–132. https://doi.org/10.6000/1929-6029.2016.05.02.6

Issue

Section

General Articles