Validation of the Smooth Test of Goodness-of-Fit for Proportional Hazards in Cancer Survival Studies

Authors

  • Collins Odhiambo Strathmore Institute of Mathematical Sciences, Strathmore University, Ole Sangale Road, Nairobi, Kenya
  • John Odhiambo Strathmore Institute of Mathematical Sciences, Strathmore University, Ole Sangale Road, Nairobi, Kenya
  • Bernard Omolo Division of Mathematics & Computer Science, University of South Carolina-Upstate, 800 University Way, Spartanburg, South Carolina, USA

DOI:

https://doi.org/10.6000/1929-6029.2017.06.02.1

Keywords:

Cancer, Cox proportional hazards model, Global test, Neyman’s smooth test, Two-sample problem

Abstract

In this study, we validate the smooth test of goodness-of-fit for the proportionality of the hazard function in the two-sample problem in cancer survival studies. The smooth test considered here is an extension of Neyman’s smooth test for proportional hazard functions. Simulations are conducted to compare the performance of the smooth test, the data-driven smooth test, the Kolmogorov-Smirnov proportional hazards test and the global test, in terms of power. Eight real cancer datasets from different settings are assessed for the proportional hazard assumption in the Cox proportional hazard models, for validation. The smooth test performed best and is independent of the number of covariates in the Cox proportional hazard models.

References

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: a Cancer Journal for Clinicians 2016; 66(1): 7-30. https://doi.org/10.3322/caac.21332 DOI: https://doi.org/10.3322/caac.21332

Persson I. Essays on the assumption of proportional hazards in Cox regression. Acta Universitatis Upsaliensis 2002.

David CR. Regression models and life tables (with discussion). Journal of the Royal Statistical Society 1972; 34: 187-220. DOI: https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

Therneau TM, Grambsch PM, Fleming TR. Martingale-based residuals for survival models. Biometrika 1990; 147-160. https://doi.org/10.1093/biomet/77.1.147 DOI: https://doi.org/10.1093/biomet/77.1.147

Barlow WE, Prentice RL. Residuals for relative risk regression. Biometrika 1988; 65-74. https://doi.org/10.1093/biomet/75.1.65 DOI: https://doi.org/10.1093/biomet/75.1.65

Schoenfeld D. Partial residuals for the proportional hazards regression model. Biometrika 1982; 239-241. https://doi.org/10.1093/biomet/69.1.239 DOI: https://doi.org/10.1093/biomet/69.1.239

Kay R. Proportional hazard regression models and the analysis of censored survival data. Applied Statistics 1977; 227-237. https://doi.org/10.2307/2346962 DOI: https://doi.org/10.2307/2346962

Quantin C, Moreau T, Asselain B, Maccario J, Lellouch J. A regression survival model for testing the proportional hazards hypothesis. Biometrics 1996; 874-885. https://doi.org/10.2307/2533049 DOI: https://doi.org/10.2307/2533049

Lin D. Goodness-of-fit analysis for the Cox regression model based on a class of parameter estimators. Journal of the American Statistical Association 1991; 86(415): 725-728. https://doi.org/10.1080/01621459.1991.10475101 DOI: https://doi.org/10.1080/01621459.1991.10475101

O'Quigley J, Pessione F. Score tests for homogeneity of regression effect in the proportional hazards model. Biometrics 1989; 135-144. https://doi.org/10.2307/2532040 DOI: https://doi.org/10.2307/2532040

Nagelkerke N, Oosting J, Hart A. A simple test for goodness of fit of Cox's proportional hazards model. Biometrics 1984; 483-486. https://doi.org/10.2307/2531400 DOI: https://doi.org/10.2307/2531400

Wei L. Testing goodness of fit for proportional hazards model with censored observations. Journal of the American Statistical Association 1984; 79(387): 649-652. https://doi.org/10.1080/01621459.1984.10478092 DOI: https://doi.org/10.1080/01621459.1984.10478092

Andersen PK. Testing goodness of fit of Cox's regression and life model. Biometrics 1982; 67-77. https://doi.org/10.2307/2530289 DOI: https://doi.org/10.2307/2530289

Schoenfeld D. Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika 1980; 67(1): 145-153. https://doi.org/10.1093/biomet/67.1.145 DOI: https://doi.org/10.1093/biomet/67.1.145

Neyman J. << Smooth test >> for goodness of fit. Scandinavian Actuarial Journal 1937; 1937(3-4): 149-199. https://doi.org/10.1080/03461238.1937.10404821 DOI: https://doi.org/10.1080/03461238.1937.10404821

Pena EA. Smooth goodness-of-fit tests for the baseline hazard in Cox's pro-portional hazards model. Journal of the American Statistical Association 1998; 93(442): 673-692. DOI: https://doi.org/10.1080/01621459.1998.10473720

Pena EA, et al. Smooth goodness-of-fit tests for composite hypothesis in hazard based models. The Annals of Statistics 1998; 26(5): 1935-1971. https://doi.org/10.1214/aos/1024691364 DOI: https://doi.org/10.1214/aos/1024691364

Kraus D. Data-driven smooth tests of the proportional hazards assumption. Lifetime Data Analysis 2007; 13(1): 1-16. https://doi.org/10.1007/s10985-006-9027-8 DOI: https://doi.org/10.1007/s10985-006-9027-8

Kraus D. Neymans smooth tests in survival analysis. PhD thesis. Charles University in Prague, Dept. of Statistics 2007.

Escanciano JC, Mayoral S. Data-driven smooth tests for the martingale difference hypothesis. Computational Statistics & Data Analysis 2010; 54(8): 1983-1998. https://doi.org/10.1016/j.csda.2010.02.023 DOI: https://doi.org/10.1016/j.csda.2010.02.023

Kraus D. Adaptive Neyman's smooth tests of homogeneity of two samples of survival data. Journal of Statistical Planning and Inference 2009; 139(10): 3559-3569. https://doi.org/10.1016/j.jspi.2009.04.009 DOI: https://doi.org/10.1016/j.jspi.2009.04.009

Kang SI. Performance of generalized Neyman smooth goodness of fit tests 1978.

Lin DY, Wei LJ, Ying Z. Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 1993; 80(3): 557-572. https://doi.org/10.1093/biomet/80.3.557

Bagdonavicˇius V, Nikulin M. On goodness-of-fit for the linear transformation and frailty models. Statistics & Probability Letters 2000; 47(2): 177-188. https://doi.org/10.1016/S0167-7152(99)00155-8 DOI: https://doi.org/10.1016/S0167-7152(99)00155-8

Ledwina T. Data-driven version of Neyman's smooth test of fit. Journal of the American Statistical Association 1994; 89(427): 1000-1005. https://doi.org/10.1080/01621459.1994.10476834 DOI: https://doi.org/10.1080/01621459.1994.10476834

Lin DY, Wei LJ, Ying Z. Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 1993; 80(3): 557-572. https://doi.org/10.1093/biomet/80.3.557 DOI: https://doi.org/10.1093/biomet/80.3.557

Lin D. On the Breslow estimator. Lifetime data analysis 2007; 13(4): 471-480. https://doi.org/10.1007/s10985-007-9048-y DOI: https://doi.org/10.1007/s10985-007-9048-y

Grambsch PM, Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994; 515-526. https://doi.org/10.1093/biomet/81.3.515 DOI: https://doi.org/10.1093/biomet/81.3.515

Andersen PK, Borgan O, Gill RD, Keiding N. Statistical models based on counting processes. Springer Science & Business Media 2012.

Royston P, Lambert PC, et al. Flexible parametric survival analysis using Stata: beyond the Cox model 2011.

Royston P, Lambert PC, et al. Flexible parametric survival analysis using Stata: beyond the Cox model 2011.

Edmonson JH, Fleming TR, Decker D, Malkasian G, Jorgensen E, Jefferies J, et al. Different chemotherapeutic sensitivities and host factors affecting prog-nosis in advanced ovarian carcinoma versus minimal residual disease. Cancer Treatment Reports 1979; 63(2): 241-247.

Loprinzi CL, Laurie JA, Wieand HS, Krook JE, Novotny PJ, Kugler JW, et al. Prospective evaluation of prognostic variables from patient-completed question- naires. North Central Cancer Treatment Group. Journal of Clinical Oncology 1994; 12(3): 601-607. https://doi.org/10.1200/JCO.1994.12.3.601 DOI: https://doi.org/10.1200/JCO.1994.12.3.601

Zagars GK, Von Eschenbach AC, Ayala AG. Prognostic factors in prostate cancer: analysis of 874 patients treated with radiation therapy. Cancer 1993; 72(5): 1709-1725. https://doi.org/10.1002/1097-0142(19930901)72:5<1709::AID-CNCR2820720535>3.0.CO;2-O DOI: https://doi.org/10.1002/1097-0142(19930901)72:5<1709::AID-CNCR2820720535>3.0.CO;2-O

Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Goodman PJ, et al. Levamisole and uorouracil for adjuvant therapy of resected colon carcinoma. New England Journal of Medicine 1990; 322(6): 352-358. https://doi.org/10.1056/NEJM199002083220602 DOI: https://doi.org/10.1056/NEJM199002083220602

Micke P, Faldum A, Metz T, Beeh KM, Bittinger F, Hengstler JG, et al. Staging small cell lung cancer: Veterans Administration Lung Study Group versus International Association for the Study of Lung Cancer - what limits limited disease? Lung Cancer 2002; 37(3): 271-276. https://doi.org/10.1016/S0169-5002(02)00072-7 DOI: https://doi.org/10.1016/S0169-5002(02)00072-7

Downloads

Published

2017-04-10

How to Cite

Odhiambo, C., Odhiambo, J., & Omolo, B. (2017). Validation of the Smooth Test of Goodness-of-Fit for Proportional Hazards in Cancer Survival Studies. International Journal of Statistics in Medical Research, 6(2), 49–67. https://doi.org/10.6000/1929-6029.2017.06.02.1

Issue

Section

General Articles

Most read articles by the same author(s)