Using Prior Information on Parameters to Eliminate Dependence on Initial Values in Fitting Coxian Phase Type Distributions to Length of Stay Data in Healthcare Settings

Authors

  • Bin Xie Department of Epidemiology & Biostatistics, University of Western Ontario, Ontario, Canada

DOI:

https://doi.org/10.6000/1929-6029.2012.01.02.02

Keywords:

Coxian phase type distributions, Length of stay data, Maximum likelihood methods, Prior information, Dependence on initial values

Abstract

Background: Modeling length of stay (LOS) data in healthcare settings using Coxian phase type (PH) distributions is becoming increasingly popular. However, dependence on initial values is a persistent difficulty in parameter estimations. This paper explores the utility of prior information on the parameters to address this difficulty.

Methods: Maximum likelihood methods were used to estimate parameters of PH distributions that best fit simulated datasets with various sample sizes arising from PH distributions of various numbers of phases and parameters, using randomly generated initial values. Estimated values for the parameters resulting from different initial values were compared to the known values to assess the extent to which estimates depend on initial values; the impacts of sample sizes, existence of prior information, as well as the number of parameters with prior information were assessed.

Results: Without prior information, parameter estimates depend on initial values for all PH distributions and all sample sizes. Prior information on one or more parameters led to more concentrated estimates, with higher number of parameters with prior information or larger sample sizes leading to more concentrated estimates. For example, with a sample size of 500, the estimates for a parameter with known value of 0.706 without prior information had a wide range of 1.523; using prior information for two parameters narrowed that range down to 0.156. For 3-phase PH distributions, prior information on 3 parameters appeared to be sufficient to eliminate dependence on initial values, even for small sample sizes. For 4-phase PH distributions, prior information on 5 parameters and a moderate sample size were needed to eliminate such dependence.

Conclusions: Combination of prior information on parameters and sufficient sample sizes can eliminate dependence on initial values in fitting PH distributions to LOS data.

Author Biography

Bin Xie, Department of Epidemiology & Biostatistics, University of Western Ontario, Ontario, Canada

Department of Obstetrics & Gyneocology; Department of Epidemiology & Biostatistics

References

Marshall AH, McClean SI. Using Coxian phase-type distributions to identify patient characteristics for duration of stay in hospital. Health Care Manag Sci 2004; 7(4): 285-89. http://dx.doi.org/10.1007/s10729-004-7537-z

Aaronson LS, Mural CM, Pfoutz SK. Seeking information: where do pregnant women go? Health Educ Q 1988 Fall; 15(3): 335-45. http://dx.doi.org/10.1177/109019818801500307 DOI: https://doi.org/10.1177/109019818801500307

Marshall AH, Zenga M. Experimenting with the Coxian Phase-Type Distribution to Uncover Suitable Fits. Methodology and computing in applied probability 2012; 14(1): 71-86. http://dx.doi.org/10.1007/s11009-010-9174-y DOI: https://doi.org/10.1007/s11009-010-9174-y

Faddy M, Graves N, Pettitt A. Modeling length of stay in hospital and other right skewed data: comparison of phase-type, gamma and log-normal distributions. Value Health 2009; 12(2): 309-14. http://dx.doi.org/10.1111/j.1524-4733.2008.00421.x DOI: https://doi.org/10.1111/j.1524-4733.2008.00421.x

Faddy MJ, McClean SI. Using a multi-state model to enhance understanding of geriatric patient care. Aust Health Rev 2007; 31(1): 91-97. http://dx.doi.org/10.1071/AH070091 DOI: https://doi.org/10.1071/AH070091

Faddy MJ, McClean SI. Markov chain modelling for geriatric patient care. Methods Inf Med 2005; 44(3): 369-73. DOI: https://doi.org/10.1055/s-0038-1633979

Faddy MJ, McClean SI. Analysing data on lengths of stay of hospital patients using phase-type distributions. Appl Stochastic Models Bus Ind 1999; 15(4): 311-17. http://dx.doi.org/10.1002/(SICI)1526-4025(199910/12)15:4<311::AID-ASMB395>3.0.CO;2-S DOI: https://doi.org/10.1002/(SICI)1526-4025(199910/12)15:4<311::AID-ASMB395>3.0.CO;2-S

Marshall AH, Shaw B, McClean SI. Estimating the costs for a group of geriatric patients using the Coxian phase-type distribution. Stat Med 2007; 26(13): 2716-29. http://dx.doi.org/10.1002/sim.2728 DOI: https://doi.org/10.1002/sim.2728

Marshall AH, McClean SI, Shapcott CM, Millard PH. Modelling patient duration of stay to facilitate resource management of geriatric hospitals. Health Care Manag Sci 2002; 5(4): 313-19. http://dx.doi.org/10.1023/A:1020394525938 DOI: https://doi.org/10.1023/A:1020394525938

Marshall AH, McClean SI, Millard PH. Addressing bed costs for the elderly: a new methodology for modelling patient outcomes and length of stay. Health Care Manag Sci 2004; 7(1): 27-33. http://dx.doi.org/10.1023/B:HCMS.0000005395.77308.d1 DOI: https://doi.org/10.1023/B:HCMS.0000005395.77308.d1

Xie H, Chaussalet TJ, Millard PH. A continuous time Markov model for the length of stay of elderly people in institutional long-term care. J Royal Statist Soc 2005; 168: 51-61. http://dx.doi.org/10.1111/j.1467-985X.2004.00335.x DOI: https://doi.org/10.1111/j.1467-985X.2004.00335.x

Marshall AH, McClean SI. Using Coxian phase-type distributions to identify patient characteristics for duration of stay in hospital. Health Care Manag Sci 2004; 7(4): 285-89. http://dx.doi.org/10.1007/s10729-004-7537-z DOI: https://doi.org/10.1007/s10729-004-7537-z

Marshall AH, Zenga M. Simulating Coxian phase-type distributions for patient survival. Int Trans Operat Res 2009; 16(2): 213-26. http://dx.doi.org/10.1111/j.1475-3995.2009.00672.x DOI: https://doi.org/10.1111/j.1475-3995.2009.00672.x

Asmussen S, Nerman O, Olsson M. Fitting Phase-Type Distributions via the EM Algorithm. Scand J Stat 1996; 23(4): 419-41.

Lang A, Arthur JL. Parameter approximation for phase-type distributions. In: Chakravarthy SR, Alfa AS, Eds. Matrix-analytic methods in stochastic models (Lecture notes inpure and applied mathematics). New York: Marcel Dekkar 1996; pp. 151-206.

Augustin R, Buscher KJ. Characteristics of the Cox-Distribution. Perform Eval Rev 1982; 12(1): 22-32. http://dx.doi.org/10.1145/1041818.1041821 DOI: https://doi.org/10.1145/1041818.1041821

Faddy M. On inferring the Number of Phases in a Coxian Phase-Type Distribution. Commun Statistics-Stochastic Models 1998; 14: 407-17. http://dx.doi.org/10.1080/15326349808807479 DOI: https://doi.org/10.1080/15326349808807479

Faddy M. Examples of fitting structured phase-type distributions. Appl Stoch Model Data Anal 1994; 10: 247-55. http://dx.doi.org/10.1002/asm.3150100403 DOI: https://doi.org/10.1002/asm.3150100403

Faddy MJ. Penalized maximum likelihood estimation of the parameters in a Coxian phase-typedistribution. In: Latouche G, Taylor P, editors. Matrix-analytic Methods. Theory and Applications. New Jersey: World Scientific 2002; pp. 107-114. DOI: https://doi.org/10.1142/9789812777164_0006

Johnson MA. Selecting parameters of phase distribution: combining non linear programming,heuristics and Erlang distribution. ORSA J Comput 1993; 5: 69-83. http://dx.doi.org/10.1287/ijoc.5.1.69 DOI: https://doi.org/10.1287/ijoc.5.1.69

R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing 2012.

Xie B, Youash S. The effects of publishing emergency department wait time on patient utilization patterns in a community with two emergency department sites: a retrospective, quasi-experiment design. Int J Emerg Med 2011; 4(1): 29. http://dx.doi.org/10.1186/1865-1380-4-29 DOI: https://doi.org/10.1186/1865-1380-4-29

Asplin BR, Magid DJ, Rhodes KV, Solberg LI, Lurie N, Camargo CA Jr. A conceptual model of emergency department crowding. Ann Emerg Med 2003; 42(2): 173-80. http://dx.doi.org/10.1067/mem.2003.302 DOI: https://doi.org/10.1067/mem.2003.302

Downloads

Published

2012-12-20

How to Cite

Xie, B. (2012). Using Prior Information on Parameters to Eliminate Dependence on Initial Values in Fitting Coxian Phase Type Distributions to Length of Stay Data in Healthcare Settings. International Journal of Statistics in Medical Research, 1(2), 91–98. https://doi.org/10.6000/1929-6029.2012.01.02.02

Issue

Section

General Articles