Ontology Based Statistical Automated Inference - New Approach to Artificial Intelligence

Authors

  • Wlodzimierz Borkowski Independent Research Group Warsaw, Poland
  • Hanna Mielniczuk Independent Research Group Warsaw, Poland

DOI:

https://doi.org/10.6000/1929-6029.2012.01.02.06

Keywords:

Ontology, AI, OLAP Cube, General Linear Model, Statistical Inference, Hierarchical Statistical Model

Abstract

Statistical analysis requires understanding the nature of the phenomenon under study, as well as understanding sense of mathematical statistics. Bridging the gap between semantic web based on knowledge representation languages, and concepts described by mathematical formula is a challenge for AI. In order to overcome this gap the ontology language P-ONT (based on directed graph) has been invented. To illustrate the capabilities of the P-ONT language, semantic web (built on the P-ONT ontology) OLAP cube, relational data bases and generalized hierarchical statistical regression models are presented.

References

Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. LIPPINCOTT WILLIAMS and WILKINS 2008.

Perace N, Merletti F. Complexity, simplicity and epidemiology. Int J Epidemiol 2006; 35: 515-19. http://dx.doi.org/10.1093/ije/dyi322 DOI: https://doi.org/10.1093/ije/dyi322

htpp://www.Cochrane.org/.

Unied Medical Language System (UMLS), of Bethesda, MD: National Library of Medicine 2005. Springer 2005; vol. 2780-2003: pp. 51-60.

Knublauch H. Protege-owl api programmers guide. Tech Rep, http://protegewiki.stanford.edu/wiki/ProtegeOWL API Programmers Guide/.

Chen Y-J. Development of a method for ontology-based empirical knowledge representation and reasoning. Decision Support Systems 2010; 50: 1-20. http://dx.doi.org/10.1016/j.dss.2010.02.010 DOI: https://doi.org/10.1016/j.dss.2010.02.010

Kleinberg S, Hripcsak G. A review of causal inference for biomedical informatic. J Biomed Inform 2011; 44: 1102-12. http://dx.doi.org/10.1016/j.jbi.2011.07.001 DOI: https://doi.org/10.1016/j.jbi.2011.07.001

Borkowski W, Mielniczuk H. Fcp based ontology of a statistical model for automated inference. 4-th International SWAT4LSW-2011 Workshop, December 2011.

Borkowski W, Mielniczuk H. The use of cartesian product of owl classes to build a statistical model for the ai statistical analysis. ICB Seminar Statistics and Clinical Practice, International Centre of Biocybernetics-Poland Warsaw, June 2011.

Klyne G, Carroll JJ. Resource description framework (rdf). Concepts and Abstract SyntaxW3C Recommendation. Tech Rep February 2004.

Schneider P, Hayes P, Horrocs P. Owl web ontology language. semantics and abstract syntax. W3C Recommendation. Tech Rep February 2004.

Hommeaux PE, S. A. Sparql query language for rdf. w3c recommendation 15. Tech Rep http://www.w3.org/TR/rdf-sparql-query/, January 2008.

Guest and Editorial. Ontological foundations for biomedical sciences. Artic Intellig Med 2007; 3: 179-82. DOI: https://doi.org/10.1016/j.artmed.2006.12.006

Sowa JF. Knowdge Representation: Logical, Philosocal and Computational Foundations, Cole Publishing Co., Pacic Grove, CA, 2000.

Schulz S, Hahn U. Towards the ontological foundations of symbolic biological theories. Artic Intellig Med 2007; 39: 237-50. http://dx.doi.org/10.1016/j.artmed.2006.12.001 DOI: https://doi.org/10.1016/j.artmed.2006.12.001

Mielniczuk H, Borkowski W. Cartesian product of owl classes-theoretical foundations and application in the construction of probabilistic models in the space rn. in ICB,. Seminar Statistics and Clinical Practice, International Centre of Biocybernetics -Poland, Warsaw, June 2011.

Vassiliadis P. Modeling multidimensional databases, cubes and cube operations. In Proc. of the 10th SSDBM Conference 1998; pp. 53-62. http://dx.doi.org/10.1109/SSDM.1998.688111 DOI: https://doi.org/10.1109/SSDM.1998.688111

Benczur A, Molnar A. An extended partition model for generalized multidimensional data 2007.

Maniatis OA, Maniatis A, Vassiliadis P, Skiadopoulos S, Vassiliou Y. Cpm: A cube presentation model for in DaWaK 2003, Prague, Czech Republic, September 2003; pp. 3-5. DOI: https://doi.org/10.1007/978-3-540-45228-7_2

An Y, Mylopoulos J, Borgida A. Building semantic mappings from databases to ontologies. In Proceedings of the Twenty-First National Conference on Articial Intelligence (AAAI-06) (Boston M, Ed.) 2006. DOI: https://doi.org/10.1007/978-3-540-31839-2_7

Lukasiewicz T, Straccia U. Description logic programs under probabilistic uncertainty and fuzzy vagueness. Int J Approximate Reasoning 2009; 50: 837-53. http://dx.doi.org/10.1016/j.ijar.2009.03.004 DOI: https://doi.org/10.1016/j.ijar.2009.03.004

Lukasiewicz T. Expressive probabilistic description logics. Artic Intellig 2008; 172: 852-83. http://dx.doi.org/10.1016/j.artint.2007.10.017 DOI: https://doi.org/10.1016/j.artint.2007.10.017

Shen TH, Tarczy-Hornoch P, Detwiler LT, et al. Evaluation of probabilistic and logical inference for a snp annotation system. J Biomed Inform 2010; 43: 407-18. http://dx.doi.org/10.1016/j.jbi.2009.12.002 DOI: https://doi.org/10.1016/j.jbi.2009.12.002

Keinbaum D, Kupper L, Muller LA. Appled Regression Analysis And Other Multivarable Methods. Wadsworth, Belmont CA, 1980.

Keinbaum D. Logistic Regression A self-Learrning Text. Springer Verlag New York 1994.

Linhart H, Zucchini W. Model Selection. John Willey And Sons 1986. http://dx.doi.org/10.1007/BF02932566 DOI: https://doi.org/10.1007/BF02932566

Pinheiro JC, Bates DM. Mixed Eects Models in S and S-Plus. Springer Science, Business Medi, 2004.

JADE-Java Agent Development Framework http://jade.tilab.com/.

Ashburner M, Ball CA, Blake JA. Gene ontology: tool for the unication of biology. Gene Ontol Consortium Nat Genet 2000; 25(1): 25-29. DOI: https://doi.org/10.1038/75556

Libby P. Atherosclerosis: The new view, Scientic American, vol. May 2002, 2002. http://dx.doi.org/10.1038/scientificamerican0502-46 DOI: https://doi.org/10.1038/scientificamerican0502-46

The R Project for Statistical Computing- http//www.r-project.org/.

Gruber TR. A translation approach to portable ontology specications, knowledge acquisition. Curr Issues Knowledge Modeling 1993; 5: 199-20. http://dx.doi.org/10.1006/knac.1993.1008 DOI: https://doi.org/10.1006/knac.1993.1008

Downloads

Published

2012-12-20

How to Cite

Borkowski, W., & Mielniczuk, H. (2012). Ontology Based Statistical Automated Inference - New Approach to Artificial Intelligence. International Journal of Statistics in Medical Research, 1(2), 128–143. https://doi.org/10.6000/1929-6029.2012.01.02.06

Issue

Section

General Articles