Evaluation and Comparison of Plasma miRNA-31 in Oral Squamous Cell Carcinoma

Authors

  • Santhosh Kumar Caliaperoumal Department of Dentistry, Vinayaka Mission’s Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, 609609, India https://orcid.org/0000-0001-7933-1782
  • Saranyan Ravi Department of Periodontia, Vinayaka Mission’s Dental College & Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, Tamil Nadu, India
  • M. Thirumaran Department of Physiology, Vinayaka Mission’s Medical College and Ospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, 609609, India
  • Balakrishnan Jeyakumar Central Research Laboratory, Vinayaka Mission’s Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, 609609, India
  • Devi Mani Department of Oral Pathology, Adhiparasakthi Dental College and Hospital, Chennai, Tamil Nadu, India

DOI:

https://doi.org/10.6000/1929-6029.2022.11.23

Keywords:

Oral Squamous cell carcinoma (OSCC), microRNA-31 (miRNA-31/miR-31), microRNA, Plasma, Diagnosis, Prognosis

Abstract

Background/Purpose: Oral Squamous cell carcinoma is sixth most common cancer with considerable morbidity and mortality. The microRNAs (miRNAs) are set of short RNAs involved in regulating the expression of protein coding genes. They are up or down-regulated in carcinogenesis and in oral cancer. The miRNA-31 (miR-31) is increased in oral cancer.

Objective: To evaluate and compare the expression of miRNA-31 in plasma of Oral squamous cell carcinoma and control subjects.

Materials and Methods: Case control study was carried out in 25 cases of oral squamous cell carcinoma subjects and 25 normal control subjects. The level of miRNA-31 in blood plasma was evaluated by miRNA easy kit (quagen) and miRNA-based qRT-PCR. The fold change was observed and compared between OSCC and controls.

Results: The plasma level of miRNA-31 was significantly increased in OSCC patients compared to controls (p<0.001). The patients with moderately differentiated, grade 4 OSCC patients showed significant increase in fold change compared to control, well differentiated and grade 3 OSCC (p<0.001).

Conclusion: Our results indicate that plasma miR-31 may be used as an adjuvant biomarker the detection of OSCC patient.

References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-49. https://doi.org/10.3322/caac.21660 DOI: https://doi.org/10.3322/caac.21660

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68: 7-30. https://doi.org/10.3322/caac.21442 DOI: https://doi.org/10.3322/caac.21442

McCullough MJ, Prasad G, Farah CS. Oral mucosal malignancy and potentially malignant lesions: an update on the epidemiology, risk factors, diagnosis and management. Australian Dental Journal 2010; 55: 61-65. https://doi.org/10.1111/j.1834-7819.2010.01200.x DOI: https://doi.org/10.1111/j.1834-7819.2010.01200.x

Montero PH, Patel SG. Cancer of the oral cavity. Surg Oncol Clin N Am 2015; 24: 491-508. https://doi.org/10.1016/j.soc.2015.03.006 DOI: https://doi.org/10.1016/j.soc.2015.03.006

Valdez JA, Brennan MT. Impact of oral cancer on quality of life. Dent Clin North Am 2018; 62: 143-154. https://doi.org/10.1016/j.cden.2017.09.001 DOI: https://doi.org/10.1016/j.cden.2017.09.001

Radhika, Jeddy, Nithya, Muthumeenakshi. Salivary biomarkers in oral squamous cell carcinoma - An insight. J Oral Biol Craniofac Res 2016; 6(Suppl 1): S51-S54. https://doi.org/10.1016%2Fj.jobcr.2016.07.003 DOI: https://doi.org/10.1016/j.jobcr.2016.07.003

Santosh AB, Jones T, Harvey J. A review on oral cancer biomarkers: Understanding the past and learning from the present. J Can Res Ther 2016; 12: 486-92. https://doi.org/10.4103/0973-1482.176414 DOI: https://doi.org/10.4103/0973-1482.176414

Rajkumari S, Sathiyajeeva J, Santhosh Kumar C, Sunil PM, Thayumanavan B. Molecular predictors in early diagnosis of oral cancer. Journal of Clinical and Diagnostic Research 2013; 7(5): 942-944. https://doi.org/10.7860%2FJCDR%2F2013%2F5058.2983

Payne K, Spruce R, Beggs A, et al. Circulating tumor DNA as a biomarker and liquid biopsy in head and neck squamous cell carcinoma. Head & Neck 2018; 00: 1-7. https://doi.org/10.1002/hed.25140 DOI: https://doi.org/10.1002/hed.25140

Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou Artimis G. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 2015; 43: W460-W466. https://doi.org/10.1093/nar/gkv403 DOI: https://doi.org/10.1093/nar/gkv403

Wu BH, Xiong XP, Jia J, Zhang WF. MicroRNAs: new actors in the oral cancer scene. Oral Oncol 2011; 47: 314-319. https://doi.org/10.1016/j.oraloncology.2011.03.019 DOI: https://doi.org/10.1016/j.oraloncology.2011.03.019

Lamichhane SR, Thachil T, Gee H, Milic N. Circulating MicroRNAs as prognostic molecular biomarkers in human head and neck cancer: A systematic review and meta-analysis. dis markers. Dis Markers 2019; 18. https://doi.org/10.1155%2F2019%2F8632018 DOI: https://doi.org/10.1155/2019/8632018

Chuan F, Yadong L. Prospective application of microRNAs in oral cancer. Oncology Letters 2019; 18: 3974-3984. https://doi.org/10.3892/ol.2019.10751 DOI: https://doi.org/10.3892/ol.2019.10751

Kumarasamy C, Devi A, Jayaraj R. Prognostic value of microRNAs in head and neck cancers: A systematic review and meta-analysis protocol. Syst Rev 2018; 7: 150. https://doi.org/10.4161/rna.8.5.16154 DOI: https://doi.org/10.1186/s13643-018-0812-8

Wang J, Lv N, Lu X, Yuan R, Chen Z, Yu J. Diagnostic and therapeutic role of microRNAs in oral cancer. Oncol Rep 2020; 45: 58-64. https://doi.org/10.3892%2For.2020.7854 DOI: https://doi.org/10.3892/or.2020.7854

Patil S, Warnakulasuriya S. Blood-based circulating microRNAs as potential biomarkers for predicting the prognosis of headand neck cancer-a systematic review. Clin Oral Investig 2020; 24: 3833-3841. https://doi.org/10.1007/s00784-020-03608-7 DOI: https://doi.org/10.1007/s00784-020-03608-7

Lin X, Wu W, Ying Y, Luo J, Xu X, Zheng L, Wu W, Yang S, Zhao S. MicroRNA-31: a pivotal oncogenic factor in oral squamous cell carcinoma. Cell Death Discovery 2022; 8: 140. https://doi.org/10.1038%2Fs41420-022-00948-z DOI: https://doi.org/10.1038/s41420-022-00948-z

Laurila EM, Kallioniemi A. The diverse role of miR-31 in regulating cancer associated phenotypes. Genes Chromosomes Cancer 2013; 52: 1103-13. https://doi.org/10.1002/gcc.22107 DOI: https://doi.org/10.1002/gcc.22107

Chang KW, Kao SY, Wu YH, Tsai MM, Tu HF, Liu CJ, et al. Passenger strand miRNA miR-31 regulates the phenotypes of oral cancer cells by targeting RhoA. Oral Oncol 2013; 49: 27-33.29. https://doi.org/10.1016/j.oraloncology.2012.07.003 DOI: https://doi.org/10.1016/j.oraloncology.2012.07.003

Lu WC, Kao SY, Yang CC, Tu HF, Wu CH, Chang KW, et al. EGF up-regulates miR-31through the C/EBPbeta signal cascade in oral carcinoma. PLoS ONE 2014; 9: e108049. https://doi.org/10.1371/journal.pone.0108049 DOI: https://doi.org/10.1371/journal.pone.0108049

Chou CH, Chiang CF, Yang CC, Liu YC, Chang SR, Chang KW, et al. miR-31-NUMB cascade modulates monocarboxylate transporters to increase oncogenicity and lactate production of oral carcinoma cells. Int J Mol Sci 2021; 22: 11731. https://doi.org/10.3390/ijms222111731 DOI: https://doi.org/10.3390/ijms222111731

Hung PS, Tu HF, Kao SY, Yang CC, Liu CJ, Huang TY, et al. miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis. 2014; 35: 1162-71. https://doi.org/10.1093/carcin/bgu024 DOI: https://doi.org/10.1093/carcin/bgu024

Liu CJ, Kao SY, Tu HF, Tsai MM, Chang KW, Lin SC. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis 2010; 16: 360-4. https://doi.org/10.1111/j.1601-0825.2009.01646.x DOI: https://doi.org/10.1111/j.1601-0825.2009.01646.x

Liu CJ, Lin SC, Yang CC, Cheng HW, Chang KW. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck 2012; 34: 219-24. https://doi.org/10.1002/hed.21713 DOI: https://doi.org/10.1002/hed.21713

Schneider A, Victoria B, Lopez YN, Suchorska W, Barczak W, Sobecka A, et al. Tissue and serum microRNA profile of oral squamous cell carcinoma patients. Scientific Reports 2018; 8(1): 675. https://doi.org/10.1038/s41598-017-18945-z DOI: https://doi.org/10.1038/s41598-017-18945-z

Kumari P, Syed SA, Wahid M, Qureshi MA, Kumar R. Expression of miR-31 in salivaliquid biopsy in patients with oral squamous cell carcinoma. J Taibah Univ Med Sci 2021; 16: 733-9. https://doi.org/10.1016%2Fj.jtumed.2021.03.007 DOI: https://doi.org/10.1016/j.jtumed.2021.03.007

Siow MY, Ng LP, Vincent-Chong VK, Jamaludin M, Abraham MT, Abdul RZ, et al. Dysregulation of miR-31 and miR-375 expression is associated with clinical outcomes in oral carcinoma. Oral Dis 2014; 20: 345-51. https://doi.org/10.1111/odi.12118 DOI: https://doi.org/10.1111/odi.12118

Maheswari TNU, Nivedhitha MS, Ramani P. Expression profile of salivary micro RNA-21 and 31 in oral potentially malignant disorders. Braz Oral Res 2020; 34: e002. https://doi.org/10.1590/1807-3107bor-2020.vol34.0002 DOI: https://doi.org/10.1590/1807-3107bor-2020.vol34.0002

Kolokythas A, Zhou Y, Schwartz JL, Adami GR. Similar squamous cell carcinoma epithelium microRNA expression in never smokers and ever smokers. PLoS ONE 2015; 10: e141695. https://doi.org/10.1371/journal.pone.0141695 DOI: https://doi.org/10.1371/journal.pone.0141695

Downloads

Published

2022-12-30

How to Cite

Caliaperoumal, S. K. ., Ravi, S. ., Thirumaran, M. ., Jeyakumar, B. ., & Mani, D. . (2022). Evaluation and Comparison of Plasma miRNA-31 in Oral Squamous Cell Carcinoma. International Journal of Statistics in Medical Research, 11, 186–191. https://doi.org/10.6000/1929-6029.2022.11.23

Issue

Section

General Articles