Development of New Methods and Materials for the Restoration of Tooth Pulp

Authors

  • Serhii Terekhov Department of Stomatology Institute of Postgraduate Education, O.O. Bogomolets National Medical University, 13, T. Shevchenko blvd., 01601, Kyiv, Ukraine
  • Maryana Pasichnyk Department of Therapeutic Dentistry, Danylo Halytsky Lviv Nation Medical Unsversity, 69, Pekarska Str., 79010, Lviv, Ukraine https://orcid.org/0000-0003-3437-7554
  • Andrii Proshchenko Department of Stomatology Institute of Postgraduate Education, O.O. Bogomolets National Medical University, 13, T. Shevchenko blvd., 01601, Kyiv, Ukraine
  • Nina Proshchenko Department of Orthopedic Stomatology, Faculty of Dentistry, O.O. Bogomolets National Medical University, 13, T. Shevchenko blvd., 01601, Kyiv, Ukraine
  • Dmytro Kasіanenko Department of Pediatric Dentistry, Vinnytsia National Medical University, 56, Pirogova street, 21018, Vinnytsia, Ukraine

DOI:

https://doi.org/10.6000/1929-6029.2024.13.10

Keywords:

Pulpitis, biological method of treatment, conservative treatment, Biodentin, microbiocenosis

Abstract

Nowadays, the latest treatment technologies are actively developing in dental practice, namely for the restoration of tooth pulp.

Aim: to evaluate the advantages of using modern materials in the treatment of tooth pulps.

Materials and Methods: We examined 33 patients with pulp diseases: 18 women (54.5%) and 15 men (45.5%) with an average age of (33.2±2.3) years. 18 patients (group I) had conservative treatment; 15 patients (group II) got pulp restoration using Biodentin.

Results: In 33 (100 %) patients of both groups, inflammation of tooth pulps was found; in 5 of 18 (27.8 %) patients of group I and 6 of 15 (40.0 %) patients of group II, the presence of fibrous pulpitis without signs of periodontitis was determined, in patients of group II, 4 of 15 (26.7 %) - acute diffuse pulpitis. Streptococci with α-haemolytic activity, staphylococci and fungi of the genus Candida albicans were detected in the plaque. In 93.3% of patients, both clinical and overall success was achieved with Biodentin, and the frequency of isolation of microorganisms of the genus Streptococcus spp. with α-haemolytic activity and Candida albicans decreased.

Conclusions: Effective pulp restoration, inflammatory process reduction, and conditionally pathogenic microflora suppression were found in patients treated with Biodentin.

References

Dal-Fabbro R, Swanson WB, Capalbo LC, Sasaki H, Bottino MC. Next-generation biomaterials for dental pulp tissue immunomodulation. Dent Mater 2023; 39(4): 333-349. https://doi.org/10.1016/j.dental.2023.03.013 DOI: https://doi.org/10.1016/j.dental.2023.03.013

Morotomi T, Washio A, Kitamura C. Current and future options for dental pulp therapy. Jpn Dent Sci Rev2019; 55(1): 5-11. https://doi.org/10.1016/j.jdsr.2018.09.001 DOI: https://doi.org/10.1016/j.jdsr.2018.09.001

Ahmed HMA, Nagendrababu V, Duncan HF, Peters OA, Dummer PMH. Developing a consensus-based glossary of controversial terms in Endodontology. Int Endod J2023; 56(7): 788-791. https://doi.org/10.1111/iej.13918 DOI: https://doi.org/10.1111/iej.13918

Lin GSS, Yew YQ, Lee HY, Low T, Pillai MPM, Laer TS, Wafa SWWSST. Is pulpotomy a promising modality in treating permanent teeth? An umbrella review. Odontology 2022; 110(2): 393-409. https://doi.org/10.1007/s10266-021-00661-w DOI: https://doi.org/10.1007/s10266-021-00661-w

Atila D, Chen CY, Lin CP, LeeYL, Hasirci V, Tezcaner A, Lin FH. In vitro evaluation of injectable Tideglusib-loaded hyaluronic acid hydrogels incorporated with Rg1-loaded chitosan microspheres for vital pulp regeneration. Carbohydr Polym2022; 278: 118976. https://doi.org/10.1016/j.carbpol.2021.118976 DOI: https://doi.org/10.1016/j.carbpol.2021.118976

Ducret M, Costantini A, Gobert S, Farges JC, Bekhouche M. Fibrin-based scaffolds for dental pulp regeneration: from biology to nanotherapeutics.Eur Cell Mater 2021; 41: 1-14. https://doi.org/10.22203/eCM.v041a01 DOI: https://doi.org/10.22203/eCM.v041a01

Duncan HF, Kobayashi Y, Kearney M, Shimizu E. Epigenetic therapeutics in dental pulp treatment: Hopes, challenges and concerns for the development of next-generation biomaterials. Bioact Mater 2023; 27: 574-593. https://doi.org/10.1016/j.bioactmat.2023.04.013 DOI: https://doi.org/10.1016/j.bioactmat.2023.04.013

Moussa DG, Aparicio C. Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration. J Tissue Eng Regen Med 2019; 13(1): 58-75. https://doi.org/10.1002/term.2769 DOI: https://doi.org/10.1002/term.2769

Matichescu A, Ardelean LC, Rusu LC, Craciun D, Bratu EA, Babucea M, Leretter M. Advanced Biomaterials and Techniques for Oral Tissue Engineering and Regeneration-A Review. Materials (Basel, Switzerland) 2020; 13(22): 5303. https://doi.org/10.3390/ma13225303 DOI: https://doi.org/10.3390/ma13225303

López-García S, Aznar-Cervantes SD, Pagán A, Llena C, Forner L, Sanz JL, García-Bernal D, Sánchez-Bautista S, Ceballos L, Fuentes V, Melo M, Rodríguez-Lozano FJ, Oñate-Sánchez RE. 3D Graphene/silk fibroin scaffolds enhance dental pulp stem cell osteo/odontogenic differentiation. Dent Mater 2023; 40(3): 431-440. https://doi.org/10.1016/j.dental.2023.12.009 DOI: https://doi.org/10.1016/j.dental.2023.12.009

Leveque M, Bekhouche M, Farges JC, Aussel A, Sy K, Richert R, Ducret M. Bioactive Endodontic Hydrogels: From Parameters to Personalized Medicine. Int J Mol Sci 2023; 24(18): 14056. https://doi.org/10.3390/ijms241814056 DOI: https://doi.org/10.3390/ijms241814056

Bottino MC, Pankajakshan D, Nör JE. Advanced Scaffolds for Dental Pulp and Periodontal Regeneration. Dent Clin North Am 2017; 61(4): 689-711. https://doi.org/10.1016/j.cden.2017.06.009 DOI: https://doi.org/10.1016/j.cden.2017.06.009

Hadjichristou C, Papachristou E, Bonovolias I, Bakopoulou A. Three-dimensional tissue engineering-based Dentin/Pulp tissue analogue as advanced biocompatibility evaluation tool of dental restorative materials. Dent Mater 2020; 36(2): 229-248. https://doi.org/10.1016/j.dental.2019.11.013 DOI: https://doi.org/10.1016/j.dental.2019.11.013

Leveque M, Guittat M, Thivichon-Prince B, Reuzeau A, Eveillard M, Faure M, Farges JC, Richert R, Bekhouche M, Ducret M. Next generation antibacterial strategies for regenerative endodontic procedures: A scoping review. Int Endod J 2023; Online ahead of print. https://doi.org/10.1111/iej.13958 DOI: https://doi.org/10.1111/iej.13958

Ferracane JL, Sidhu SK, Melo MAS, Yeo I-SL, Diogenes A, Darvell BW. Bioactive Dental Materials. JADA Found Sci 2023; 2: 100022. https://doi.org/10.1016/j.jfscie.2023.100022 DOI: https://doi.org/10.1016/j.jfscie.2023.100022

Darvell BW, Smith AJ. Inert to bioactive - A multidimensional spectrum. Dent Mater 2022; 38(1): 2-6. https://doi.org/10.1016/j.dental.2021.11.002 DOI: https://doi.org/10.1016/j.dental.2021.11.002

Ribeiro JS, Münchow EA, Bordini EAF, Rodrigues NS, Dubey N, Sasaki H, Fenno JC, Schwendeman S, Bottino MC. Engineering of Injectable Antibiotic-laden Fibrous Microparticles Gelatin Methacryloyl Hydrogel for Endodontic Infection Ablation. Int J Mol Sci 2022; 23(2): 971. https://doi.org/10.3390/ijms23020971 DOI: https://doi.org/10.3390/ijms23020971

Ducret M, Montembault A, Josse J, Pasdeloup M, Celle A, Benchrih R, Mallein-Gerin F, Alliot-Licht B, David L, Farges JC. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dent Mater 2019; 35(4): 523-533. https://doi.org/10.1016/j.dental.2019.01.018 DOI: https://doi.org/10.1016/j.dental.2019.01.018

Zhang R, Xie L, Wu H, Yang T, Zhang Q, Tian Y, Liu Y, Han X, Guo W, He M, Liu S, Tian W. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater 2020; 113: 305-316. https://doi.org/10.1016/j.actbio.2020.07.012 DOI: https://doi.org/10.1016/j.actbio.2020.07.012

Wu S, Zhou Y, Yu Y, Zhou X, Du W, Wan M, Fan Y, Zhou X, Xu X, Zheng L. Evaluation of Chitosan Hydrogel for Sustained Delivery of VEGF for Odontogenic Differentiation of Dental Pulp Stem Cells. Stem CellsInt 2019; 2019: 1515040. https://doi.org/10.1155/2019/1515040 DOI: https://doi.org/10.1155/2019/1515040

Mantesso A, Zhang Z, Warner KA, Herzog AE, Pulianmackal AJ, Nör JE. Pulpbow: A Method to Study the Vasculogenic Potential of Mesenchymal Stem Cells from the Dental Pulp. Cells 2021; 10(11): 2804. https://doi.org/10.3390/cells10112804 DOI: https://doi.org/10.3390/cells10112804

Loureiro C, Buzalaf MAR, PessanJP, Moraes FRN, PeláVT, Ventura TMO, Jacinto RC. Comparative Analysis of the Proteomic Profile of the Dental Pulp in Different Conditions. A Pilot Study. Braz Dent J 2020; 31(3): 319-336. https://doi.org/10.1590/0103-6440202003167 DOI: https://doi.org/10.1590/0103-6440202003167

Itoh Y, Sasaki JI, Hashimoto M, KatataC, HayashiM, Imazato S. Pulp Regeneration by 3-dimensional Dental Pulp Stem Cell Constructs. Journal of Dental Research 2018; 97(10): 1137-1143. https://doi.org/10.1177/0022034518772260 DOI: https://doi.org/10.1177/0022034518772260

Asgary S, Eghbal MJ, Shahravan A, Saberi E, Baghban AA, Parhizkar A. (2022). Outcomes of root canal therapy or full pulpotomy using two endodontic biomaterials in mature permanent teeth: a randomized controlled trial. Clin OralInvestig 2022; 26(3): 3287-3297. https://doi.org/10.1007/s00784-021-04310-y DOI: https://doi.org/10.1007/s00784-021-04310-y

Bashar AK, Kabir MN, Ghosh R, Sajedin M, Rahman MM. Early Inflammatory Response of Dental Pulp in Response to Biodentin and Mineral Trioxide Aggregate as Pulp-capping Agents. Mymensingh Med J 2023; 32(4): 1038-1045.

Duncan HF. Present status and future directions-Vital pulp treatment and pulp preservation strategies. Int Endod J 2022; 55(Suppl 3): 497-511. https://doi.org/10.1111/iej.13688 DOI: https://doi.org/10.1111/iej.13688

Al-Ahmad A, Haendel M, Altenburger MJ, Karygianni L, Hellwig E, Wrbas KT, Vach K, Tennert C. Biodentine Inhibits the Initial Microbial Adhesion of Oral Microbiota In vivo. Antibiotics (Basel, Switzerland) 2022; 12(1): 4. https://doi.org/10.3390/antibiotics12010004 DOI: https://doi.org/10.3390/antibiotics12010004

Ruiz-Linares M, de Oliveira Fagundes J, Solana C, Baca P, Ferrer-Luque CM. Current status on antimicrobial activity of a tricalcium silicate cement. J Oral Sci 2022; 64(2): 113-117. https://doi.org/10.2334/josnusd.21-0439 DOI: https://doi.org/10.2334/josnusd.21-0439

Poggio C, Beltrami R, Colombo M, Ceci M, Dagna A, Chiesa M. In vitro antibacterial activity of different pulp capping materials. J Clin Exp Dent 2015; 7(5): e584-e588. https://doi.org/10.4317/jced.52401 DOI: https://doi.org/10.4317/jced.52401

Schmidt J, Buenger L, Krohn S, Kallies R, Zeller K, Schneider H, Ziebolz D, Berg T, Haak R. Effect of a bioactive cement on the microbial community in carious dentin after selective caries removal – An in-vivo study. Journal of Dentistry 2020; 92: 103264. https://doi.org/10.1016/j.jdent.2019.103264 DOI: https://doi.org/10.1016/j.jdent.2019.103264

Downloads

Published

2024-08-01

How to Cite

Terekhov, S. ., Pasichnyk, M. ., Proshchenko, A. ., Proshchenko, N. ., & Kasіanenko D. . (2024). Development of New Methods and Materials for the Restoration of Tooth Pulp. International Journal of Statistics in Medical Research, 13, 116–123. https://doi.org/10.6000/1929-6029.2024.13.10

Issue

Section

General Articles