Defining Developmental Regression in Rare Neurodevelopmental Disorders of Genetic Etiology: A Scoping Review

Authors

  • Joost Kummeling Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
  • Evy Antoinette Maria van de Wiel Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands https://orcid.org/0009-0007-3804-4374
  • Lara Dora Veeken Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands https://orcid.org/0000-0003-2230-4884
  • Jos Ignatius Maria Egger Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands; Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands and Stevig Specialized and Forensic Care for People with Intellectual Disabilities, Dichterbij, Oostrum, The Netherlands
  • Tjitske Kleefstra Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands; Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands and Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
  • Karlijn Vermeulen-Kalk Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands and Department for Intellectual Disabilities, Karakter Child and Adolescent Psychiatry, Ede, The Netherlands

DOI:

https://doi.org/10.6000/2292-2598.2024.12.03.1

Keywords:

Clinical genetics, intellectual disability, developmental disability, neurodevelopmental disorders, developmental regression, scoping review

Abstract

Background: Some genetic neurodevelopmental disorders (NDDs) are linked to a loss of acquired abilities. No universal term or severity measure exists for this phenomenon. This scoping review aims further to define developmental regression in NDDs of genetic etiology.

Method: We used the PRISMA checklist and searched PubMed, medRxiv, and Google Scholar for developmental regression literature. After data extraction, qualitative (e.g., assessment methods) and quantitative (e.g., mentioned NDDs) data were analyzed.

Results: A total of 59 relevant articles from 2074 unique records were identified, associating 18 NDDs of genetic etiology with developmental regression. Multiple terms (e.g., loss of skills, deterioration) and definitions were used across syndromes.

Conclusions: A uniform definition of developmental regression was formulated based on literature diversity and NDD heterogeneity. The study also offers guidance on identifying and monitoring developmental regression and its underlying causes.

References

American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.): American Psychiatric Publishing 2013. https://doi.org/10.1176/appi.books.9780890425596 DOI: https://doi.org/10.1176/appi.books.9780890425596

Kohlenberg TM, Trelles MP, McLarney B, Betancur C, Thurm A, Kolevzon A. Psychiatric illness and regression in individuals with Phelan-McDermid syndrome. J Neurodev Disord 2020; 12(1): 7. https://doi.org/10.1186/s11689-020-9309-6 DOI: https://doi.org/10.1186/s11689-020-9309-6

Kolevzon A, Delaby E, Berry-Kravis E, Buxbaum JD, Betancur C. Neuropsychiatric decompensation in adolescents and adults with Phelan-McDermid syndrome: a systematic review of the literature. Molecular Autism 2019; 10(1): 50. https://doi.org/10.1186/s13229-019-0291-3

Kleefstra T, Kramer JM, Neveling K, et al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am J Hum Genet 2012; 91(1): 73-82. https://doi.org/10.1016/j.ajhg.2012.05.003 DOI: https://doi.org/10.1016/j.ajhg.2012.05.003

Tan C, Frewer V, Cox G, Williams K, Ure A. Prevalence and Age of Onset of Regression in Children with Autism Spectrum Disorder: A Systematic Review and Meta-analytical Update. Autism Res 2021; 14(3): 582-98. https://doi.org/10.1002/aur.2463 DOI: https://doi.org/10.1002/aur.2463

Boterberg S, Charman T, Marschik PB, Bölte S, Roeyers H. Regression in autism spectrum disorder: A critical overview of retrospective findings and recommendations for future research. Neuroscience & Biobehavioral Reviews 2019; 102: 24-55. https://doi.org/10.1016/j.neubiorev.2019.03.013 DOI: https://doi.org/10.1016/j.neubiorev.2019.03.013

Kolevzon A, Delaby E, Berry-Kravis E, Buxbaum JD, Betancur C. Neuropsychiatric decompensation in adolescents and adults with Phelan-McDermid syndrome: a systematic review of the literature. Mol Autism 2019; 10: 50. https://doi.org/10.1186/s13229-019-0291-3 DOI: https://doi.org/10.1186/s13229-019-0291-3

Willemsen MH, Vulto-van Silfhout AT, Nillesen WM, et al. Update on Kleefstra Syndrome. Mol Syndromol 2012; 2(3-5): 202-12. https://doi.org/10.1159/000335648 DOI: https://doi.org/10.1159/000335648

Holt JB, Poe MD, Escolar ML. Natural progression of neurological disease in mucopolysaccharidosis type II. Pediatrics 2011; 127(5): e1258-65. https://doi.org/10.1542/peds.2010-1274 DOI: https://doi.org/10.1542/peds.2010-1274

Hacohen Y, Wright S, Gadian J, Vincent A, Lim M, Wassmer E, Lin JP. N-methyl-d-aspartate (NMDA) receptor antibodies encephalitis mimicking an autistic regression. Dev Med Child Neurol 2016; 58(10): 1092-4. https://doi.org/10.1111/dmcn.13169 DOI: https://doi.org/10.1111/dmcn.13169

Wright CF, McRae JF, Clayton S, et al. Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1,133 families with developmental disorders. Genet Med 2018; 20(10): 1216-23. https://doi.org/10.1038/gim.2017.246 DOI: https://doi.org/10.1038/gim.2017.246

Heslop P, Blair PS, Fleming P, Hoghton M, Marriott A, Russ L. The Confidential Inquiry into premature deaths of people with intellectual disabilities in the UK: a population-based study. Lancet 2014; 383(9920): 889-95. https://doi.org/10.1016/S0140-6736(13)62026-7 DOI: https://doi.org/10.1016/S0140-6736(13)62026-7

Hosking FJ, Carey IM, Shah SM, Harris T, DeWilde S, Beighton C, Cook DG. Mortality Among Adults With Intellectual Disability in England: Comparisons With the General Population. Am J Public Health 2016; 106(8): 1483-90. https://doi.org/10.2105/AJPH.2016.303240 DOI: https://doi.org/10.2105/AJPH.2016.303240

O'Leary L, Cooper SA, Hughes-McCormack L. Early death and causes of death of people with intellectual disabilities: A systematic review. J Appl Res Intellect Disabil 2018; 31(3): 325-42. https://doi.org/10.1111/jar.12417 DOI: https://doi.org/10.1111/jar.12417

Cardoso AR, Lopes-Marques M, Silva RM, Serrano C, Amorim A, Prata MJ, Azevedo L. Essential genetic findings in neurodevelopmental disorders. Hum Genomics 2019; 13(1): 31. https://doi.org/10.1186/s40246-019-0216-4 DOI: https://doi.org/10.1186/s40246-019-0216-4

Wright CF, Fitzgerald TW, Jones WD, et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet 2015; 385(9975): 1305-14. https://doi.org/10.1016/S0140-6736(14)61705-0 DOI: https://doi.org/10.1016/S0140-6736(14)61705-0

Thesaurus of psychological index terms, 7th ed. Walker Jr A, editor. Washington, DC, US: American Psychological Association; 1994. xxv, p. 343.

Köhler S, Gargano M, Matentzoglu N, et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res 2021; 49(D1): D1207-d17. https://doi.org/10.1093/nar/gkaa1043 DOI: https://doi.org/10.1093/nar/gkaa1043

Vles JSH. Growing into deficit. In: University M, editor 2000. https://doi.org/10.26481/spe.20001208jv DOI: https://doi.org/10.26481/spe.20001208jv

Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med 2018; 169(7): 467-73. https://doi.org/10.7326/M18-0850 DOI: https://doi.org/10.7326/M18-0850

MindMeister. [Available from: https: //www.mindmeister.com].

Lyons A, Allen NM, Flanagan O, Cahalane D. Catatonia as a feature of Down syndrome: An under-recognised entity? Eur J Paediatr Neurol 2020; 25: 187-90. https://doi.org/10.1016/j.ejpn.2020.01.005 DOI: https://doi.org/10.1016/j.ejpn.2020.01.005

Worley G, Crissman BG, Cadogan E, Milleson C, Adkins DW, Kishnani PS. Down Syndrome Disintegrative Disorder: New-Onset Autistic Regression, Dementia, and Insomnia in Older Children and Adolescents With Down Syndrome. J Child Neurol 2015; 30(9): 1147-52. https://doi.org/10.1177/0883073814554654 DOI: https://doi.org/10.1177/0883073814554654

Harendra de Silva DG, de Silva DB. Norrie's disease in an Asian family. Br J Ophthalmol. 1988; 72(1): 62-4. https://doi.org/10.1136/bjo.72.1.62 DOI: https://doi.org/10.1136/bjo.72.1.62

Rosso M, Fremion E, Santoro SL, et al. Down Syndrome Disintegrative Disorder: A Clinical Regression Syndrome of Increasing Importance. Pediatrics 2020; 145(6). https://doi.org/10.1542/peds.2019-2939 DOI: https://doi.org/10.1542/peds.2019-2939

Garber N, Veydt N. Rett syndrome: a longitudinal developmental case report. J Commun Disord. 1990; 23(1): 61-75. https://doi.org/10.1016/0021-9924(90)90013-O DOI: https://doi.org/10.1016/0021-9924(90)90013-O

Sheikh TI, Harripaul R, Ayub M, Vincent JB. MeCP2 AT-Hook1 mutations in patients with intellectual disability and/or schizophrenia disrupt DNA binding and chromatin compaction in vitro. Hum Mutat 2018; 39(5): 717-28. https://doi.org/10.1002/humu.23409 DOI: https://doi.org/10.1002/humu.23409

Reichow B, George-Puskar A, Lutz T, Smith IC, Volkmar FR. Brief report: a systematic review of Rett syndrome in males. J Autism Dev Disord 2015; 45(10): 3377-83. https://doi.org/10.1007/s10803-015-2519-1 DOI: https://doi.org/10.1007/s10803-015-2519-1

Nomura Y, Segawa M. Natural history of Rett syndrome. J Child Neurol 2005; 20(9): 764-8. https://doi.org/10.1177/08830738050200091201 DOI: https://doi.org/10.1177/08830738050200091201

Kim HJ, Kim SH, Kim HD, et al. Genetic and epileptic features in Rett syndrome. Yonsei Med J 2012; 53(3): 495-500. https://doi.org/10.3349/ymj.2012.53.3.495 DOI: https://doi.org/10.3349/ymj.2012.53.3.495

LeBlanc JJ, DeGregorio G, Centofante E, et al. Visual evoked potentials detect cortical processing deficits in Rett syndrome. Ann Neurol 2015; 78(5): 775-86. https://doi.org/10.1002/ana.24513 DOI: https://doi.org/10.1002/ana.24513

Lee JY, Leonard H, Piek JP, Downs J. Early development and regression in Rett syndrome. Clin Genet 2013; 84(6): 572-6. https://doi.org/10.1111/cge.12110 DOI: https://doi.org/10.1111/cge.12110

Marschik PB, Kaufmann WE, Einspieler C, Bartl-Pokorny KD, Wolin T, Pini G, et al. Profiling early socio-communicative development in five young girls with the preserved speech variant of Rett syndrome. Res Dev Disabil 2012; 33(6): 1749-56. https://doi.org/10.1016/j.ridd.2012.04.012 DOI: https://doi.org/10.1016/j.ridd.2012.04.012

Marschik PB, Vollmann R, Bartl-Pokorny KD, et al. Developmental profile of speech-language and communicative functions in an individual with the preserved speech variant of Rett syndrome. Dev Neurorehabil 2014; 17(4): 284-90. https://doi.org/10.3109/17518423.2013.783139 DOI: https://doi.org/10.3109/17518423.2013.783139

Neul JL. The relationship of Rett syndrome and MECP2 disorders to autism. Dialogues Clin Neurosci 2012; 14(3): 253-62. https://doi.org/10.31887/DCNS.2012.14.3/jneul DOI: https://doi.org/10.31887/DCNS.2012.14.3/jneul

Pohodich AE, Zoghbi HY. Rett syndrome: disruption of epigenetic control of postnatal neurological functions. Hum Mol Genet 2015; 24(R1): R10-6. https://doi.org/10.1093/hmg/ddv217 DOI: https://doi.org/10.1093/hmg/ddv217

Swaab HB, A. Hendriksen, J. König, C. Klinische kinderneuropsychologie: Boom uitgevers Amsterdam; 2017.

Vermeulen K, Staal WG, Janzing JG, van Bokhoven H, Egger JIM, Kleefstra T. Sleep Disturbance as a Precursor of Severe Regression in Kleefstra Syndrome Suggests a Need for Firm and Rapid Pharmacological Treatment. Clin Neuropharmacol 2017; 40(4): 185-8. https://doi.org/10.1097/WNF.0000000000000226 DOI: https://doi.org/10.1097/WNF.0000000000000226

Verity C, Baker E, Maunder P, Pal S, Winstone AM. Differential diagnosis of progressive intellectual and neurological deterioration in children. Developmental Medicine & Child Neurology 2021; 63(3): 287-94. https://doi.org/10.1111/dmcn.14691

Sargado S, Milliken AL, Hojlo MA, et al. Is Developmental Regression in Down Syndrome Linked to Life Stressors? J Dev Behav Pediatr 2022; 43(7): 427-36. https://doi.org/10.1097/DBP.0000000000001086 DOI: https://doi.org/10.1097/DBP.0000000000001086

Verity C, Baker E, Maunder P, Pal S, Winstone AM. Differential diagnosis of progressive intellectual and neurological deterioration in children. Dev Med Child Neurol 2021; 63(3): 287-94. https://doi.org/10.1111/dmcn.14691 DOI: https://doi.org/10.1111/dmcn.14691

Annus T, Wilson LR, Hong YT, et al. The pattern of amyloid accumulation in the brains of adults with Down syndrome. Alzheimers Dement 2016; 12(5): 538-45. https://doi.org/10.1016/j.jalz.2015.07.490 DOI: https://doi.org/10.1016/j.jalz.2015.07.490

Wilson MM, Henshall DC, Byrne SM, Brennan GP. CHD2-Related CNS Pathologies. Int J Mol Sci 2021; 22(2). https://doi.org/10.3390/ijms22020588 DOI: https://doi.org/10.3390/ijms22020588

Wells R, Jacomb I, Swaminathan V, et al. The Impact of Childhood Adversity on Cognitive Development in Schizophrenia. Schizophr Bull 2020; 46(1): 140-53. https://doi.org/10.1093/schbul/sbz033 DOI: https://doi.org/10.1093/schbul/sbz033

Wells R, Swaminathan V, Sundram S, et al. The impact of premorbid and current intellect in schizophrenia: cognitive, symptom, and functional outcomes. NPJ Schizophr 2015; 1: 15043. https://doi.org/10.1038/npjschz.2015.43 DOI: https://doi.org/10.1038/npjschz.2015.43

Duijff SN, Klaassen PW, de Veye HF, Beemer FA, Sinnema G, Vorstman JA. Cognitive development in children with 22q11.2 deletion syndrome. Br J Psychiatry 2012; 200(6): 462-8. https://doi.org/10.1192/bjp.bp.111.097139 DOI: https://doi.org/10.1192/bjp.bp.111.097139

Mancini V, Maeder J, Bortolin K, Schneider M, Schaer M, Eliez S. Long-term effects of early treatment with SSRIs on cognition and brain development in individuals with 22q11.2 deletion syndrome. Transl Psychiatry 2021; 11(1): 336. https://doi.org/10.1038/s41398-021-01456-x DOI: https://doi.org/10.1038/s41398-021-01456-x

Einspieler C, Marschik PB. Regression in Rett syndrome: Developmental pathways to its onset. Neurosci Biobehav Rev 2019; 98: 320-32. https://doi.org/10.1016/j.neubiorev.2019.01.028 DOI: https://doi.org/10.1016/j.neubiorev.2019.01.028

Eriksson MA, Westerlund J, Hedvall Å, Åmark P, Gillberg C, Fernell E. Medical conditions affect the outcome of early intervention in preschool children with autism spectrum disorders. Eur Child Adolesc Psychiatry 2013; 22(1): 23-33. https://doi.org/10.1007/s00787-012-0312-7 DOI: https://doi.org/10.1007/s00787-012-0312-7

Glaze DG. Rett syndrome: of girls and mice--lessons for regression in autism. Ment Retard Dev Disabil Res Rev 2004; 10(2): 154-8. https://doi.org/10.1002/mrdd.20030 DOI: https://doi.org/10.1002/mrdd.20030

Larsson G, Lindström B, Engerström IW. Rett syndrome from a family perspective: The Swedish Rett Center survey. Brain Dev 2005; 27 Suppl 1: S14-s9. https://doi.org/10.1016/j.braindev.2005.03.015 DOI: https://doi.org/10.1016/j.braindev.2005.03.015

Peters SU, Hundley RJ, Wilson AK, Carvalho CM, Lupski JR, Ramocki MB. Brief report: regression timing and associated features in MECP2 duplication syndrome. J Autism Dev Disord 2013; 43(10): 2484-90. https://doi.org/10.1007/s10803-013-1796-9 DOI: https://doi.org/10.1007/s10803-013-1796-9

Peters SU, Fu C, Marsh ED, et al. Phenotypic features in MECP2 duplication syndrome: Effects of age. Am J Med Genet A 2021; 185(2): 362-9. https://doi.org/10.1002/ajmg.a.61956 DOI: https://doi.org/10.1002/ajmg.a.61956

Sigafoos J, O'Reilly MF, Ledbetter-Cho K, Lim N, Lancioni GE, Marschik PB. Addressing sequelae of developmental regression associated with developmental disabilities: A systematic review of behavioral and educational intervention studies. Neurosci Biobehav Rev 2019; 96: 56-71. https://doi.org/10.1016/j.neubiorev.2018.11.014 DOI: https://doi.org/10.1016/j.neubiorev.2018.11.014

Castillo H, Patterson B, Hickey F, et al. Difference in age at regression in children with autism with and without Down syndrome. J Dev Behav Pediatr 2008; 29(2): 89-93. https://doi.org/10.1097/DBP.0b013e318165c78d DOI: https://doi.org/10.1097/DBP.0b013e318165c78d

Fox R, Karan OC, Rotatori AF. Regression including anorexia nervosa in a Down's syndrome adult: A seven-year follow-up. J Behav Ther Exp Psychiatry. 1981; 12(4): 351-4. https://doi.org/10.1016/0005-7916(81)90078-1 DOI: https://doi.org/10.1016/0005-7916(81)90078-1

Jacobs J, Schwartz A, McDougle CJ, Skotko BG. Rapid clinical deterioration in an individual with Down syndrome. Am J Med Genet A 2016; 170(7): 1899-902. https://doi.org/10.1002/ajmg.a.37674 DOI: https://doi.org/10.1002/ajmg.a.37674

Lukowski AF, Milojevich HM, Eales L. Cognitive Functioning in Children with Down Syndrome: Current Knowledge and Future Directions. Adv Child Dev Behav 2019; 56: 257-89. https://doi.org/10.1016/bs.acdb.2019.01.002 DOI: https://doi.org/10.1016/bs.acdb.2019.01.002

Stein DS, Munir KM, Karweck AJ, Davidson EJ, Stein MT. Developmental regression, depression, and psychosocial stress in an adolescent with Down syndrome. J Dev Behav Pediatr 2013; 34(3): 216-8. https://doi.org/10.1097/DBP.0b013e31828b2b42 DOI: https://doi.org/10.1097/DBP.0b013e31828b2b42

Walpert M, Zaman S, Holland A. A Systematic Review of Unexplained Early Regression in Adolescents and Adults with Down Syndrome. Brain Sci 2021; 11(9). https://doi.org/10.3390/brainsci11091197 DOI: https://doi.org/10.3390/brainsci11091197

Fisch GS, Carpenter N, Holden JJ, et al. Longitudinal changes in cognitive and adaptive behavior in fragile X females: a prospective multicenter analysis. Am J Med Genet. 1999; 83(4): 308-12. https://doi.org/10.1002/(SICI)1096-8628(19990402)83:4<308::AID-AJMG14>3.0.CO;2-4 DOI: https://doi.org/10.1002/(SICI)1096-8628(19990402)83:4<308::AID-AJMG14>3.0.CO;2-4

Fisch GS, Carpenter NJ, Holden JJ, et al. Longitudinal assessment of adaptive and maladaptive behaviors in fragile X males: growth, development, and profiles. Am J Med Genet. 1999; 83(4): 257-63. https://doi.org/10.1002/(SICI)1096-8628(19990402)83:4<257::AID-AJMG5>3.0.CO;2-U DOI: https://doi.org/10.1002/(SICI)1096-8628(19990402)83:4<257::AID-AJMG5>3.0.CO;2-U

Hahn LJ, Brady NC, Warren SF, Fleming KK. Do Children With Fragile X Syndrome Show Declines or Plateaus in Adaptive Behavior? Am J Intellect Dev Disabil 2015; 120(5): 412-32. https://doi.org/10.1352/1944-7558-120.5.412 DOI: https://doi.org/10.1352/1944-7558-120.5.412

Kosinovsky B, Hermon S, Yoran-Hegesh R, et al. The yield of laboratory investigations in children with infantile autism. J Neural Transm (Vienna) 2005; 112(4): 587-96. https://doi.org/10.1007/s00702-004-0198-8 DOI: https://doi.org/10.1007/s00702-004-0198-8

Maltman N, Klusek J, DaWalt L, et al. Verbal inhibition declines among older women with high FMR1 premutation expansions: A prospective study. Brain Cogn 2022; 159: 105851. https://doi.org/10.1016/j.bandc.2022.105851 DOI: https://doi.org/10.1016/j.bandc.2022.105851

Warren SF, Brady N, Fleming KK, Hahn LJ. The Longitudinal Effects of Parenting on Adaptive Behavior in Children with Fragile X Syndrome. J Autism Dev Disord 2017; 47(3): 768-84. https://doi.org/10.1007/s10803-016-2999-7 DOI: https://doi.org/10.1007/s10803-016-2999-7

Biswas AB, Furniss F. Cognitive phenotype and psychiatric disorder in 22q11.2 deletion syndrome: A review. Res Dev Disabil 2016; 53-54: 242-57. https://doi.org/10.1016/j.ridd.2016.02.010 DOI: https://doi.org/10.1016/j.ridd.2016.02.010

Davies RW, Fiksinski AM, Breetvelt EJ, et al. Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. Nat Med 2020; 26(12): 1912-8. https://doi.org/10.1038/s41591-020-1103-1 DOI: https://doi.org/10.1038/s41591-020-1103-1

Engebretsen MH, Kildahl AN, Hoy IH, Bakken TL. Metyrosine treatment in a woman with chromosome 22q11.2 deletion syndrome and psychosis: a case study. Int J Dev Disabil 2017; 65(2): 116-21. https://doi.org/10.1080/20473869.2017.1401257 DOI: https://doi.org/10.1080/20473869.2017.1401257

Evers LJ, van Amelsvoort TA, Candel MJ, Boer H, Engelen JJ, Curfs LM. Psychopathology in adults with 22q11 deletion syndrome and moderate and severe intellectual disability. J Intellect Disabil Res 2014; 58(10): 915-25. https://doi.org/10.1111/jir.12117 DOI: https://doi.org/10.1111/jir.12117

Philippe A, Craus Y, Rio M, et al. Case report: an unexpected link between partial deletion of the SHANK3 gene and Heller's dementia infantilis, a rare subtype of autism spectrum disorder. BMC Psychiatry 2015; 15: 256. https://doi.org/10.1186/s12888-015-0631-6 DOI: https://doi.org/10.1186/s12888-015-0631-6

Serret S, Thümmler S, Dor E, Vesperini S, Santos A, Askenazy F. Lithium as a rescue therapy for regression and catatonia features in two SHANK3 patients with autism spectrum disorder: case reports. BMC Psychiatry 2015; 15: 107. https://doi.org/10.1186/s12888-015-0490-1 DOI: https://doi.org/10.1186/s12888-015-0490-1

Paganoni AJJ, Amoruso F, Porta Pelayo J, et al. A Novel Loss-of-Function SEMA3E Mutation in a Patient with Severe Intellectual Disability and Cognitive Regression. Int J Mol Sci 2022; 23(10). https://doi.org/10.3390/ijms23105632 DOI: https://doi.org/10.3390/ijms23105632

Srivastava S, Landy-Schmitt C, Clark B, Kline AD, Specht M, Grados MA. Autism traits in children and adolescents with Cornelia de Lange syndrome. Am J Med Genet A 2014; 164a(6): 1400-10. https://doi.org/10.1002/ajmg.a.36573 DOI: https://doi.org/10.1002/ajmg.a.36573

Kernohan KD, McBride A, Hartley T, et al. p21 protein-activated kinase 1 is associated with severe regressive autism and epilepsy. Clin Genet 2019; 96(5): 449-55. https://doi.org/10.1111/cge.13618 DOI: https://doi.org/10.1111/cge.13618

Verhoeven WMA, Egger JIM, Janssen PKC, van Haeringen A. Adult male patient with severe intellectual disability caused by a homozygous mutation in the HNMT gene. BMJ Case Rep 2020; 13(12). https://doi.org/10.1136/bcr-2020-235972 DOI: https://doi.org/10.1136/bcr-2020-235972

Weerts MJA, Lanko K, Guzmán-Vega FJ, et al. Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome. Genet Med 2021; 23(11): 2122-37. https://doi.org/10.1038/s41436-021-01246-2 DOI: https://doi.org/10.1038/s41436-021-01246-2

Srivastava S, Desai S, Cohen J, et al. Monogenic disorders that mimic the phenotype of Rett syndrome. Neurogenetics 2018; 19(1): 41-7. https://doi.org/10.1007/s10048-017-0535-3 DOI: https://doi.org/10.1007/s10048-017-0535-3

Yuen T, Chow EW, Silversides CK, Bassett AS. Premorbid adjustment and schizophrenia in individuals with 22q11.2 deletion syndrome. Schizophr Res 2013; 151(1-3): 221-5. https://doi.org/10.1016/j.schres.2013.10.041 DOI: https://doi.org/10.1016/j.schres.2013.10.041

Farrell M, Lichtenstein M, Harner MK, et al. Treatment-resistant psychotic symptoms and the 15q11.2 BP1-BP2 (Burnside-Butler) deletion syndrome: case report and review of the literature. Transl Psychiatry 2020; 10(1): 42. https://doi.org/10.1038/s41398-020-0725-x DOI: https://doi.org/10.1038/s41398-020-0725-x

Downloads

Published

2024-09-20

How to Cite

Kummeling, J. ., Maria van de Wiel, E. A. ., Veeken, L. D. ., Maria Egger, J. I. ., Kleefstra, T. ., & Vermeulen-Kalk, K. . (2024). Defining Developmental Regression in Rare Neurodevelopmental Disorders of Genetic Etiology: A Scoping Review. Journal of Intellectual Disability - Diagnosis and Treatment, 12(3), 103–123. https://doi.org/10.6000/2292-2598.2024.12.03.1

Issue

Section

General Articles