Major Classes of Phytonutriceuticals in Vegetables and Health Benefits: A Review
DOI:
https://doi.org/10.6000/1929-5634.2012.01.01.5Keywords:
Antioxidants, dietary fiber, disease control, horticulture, minerals, nutrition, phytochemicals, vitaminsAbstract
Vegetables are essential for well-balanced diets since they supply phytonutriceuticals. About 3 billion people in the world are malnourished due to imbalanced diets. Regular consumption of a vegetable rich diet has undeniable effects on health since they have been strongly associated with improvement of gastrointestinal health, good vision, and reduced risk of heart disease, stroke, chronic diseases such as diabetes, and some forms of cancer. The mechanism by which vegetables decrease risk of disease is complex and largely unknown. Some phytochemicals of vegetables are strong antioxidants and are thought to reduce the risk of chronic disease by protecting against free radical damage, by modifying metabolic activation and detoxification of carcinogens, or even by influencing processes that alter the course of tumor cells. The dietary fiber content and type of different vegetables may also contribute to the overall health benefit. Each vegetable contains a unique combination of phytonutriceuticals. A great diversity of vegetables should be eaten to ensure that individual’s diet includes a combination of phytonutriceuticals and to get all the health benefits.
References
Quebedeaux B, Eisa HM. Horticulture and human health. Contributions of fruits and vegetables. Proc. 2nd Intl. Symp. Hort. and Human Health. Hort Sci 1990; 25: 1473-32.
Craig W, Beck L. Phytochemicals: health protective effects. Can J Diet Pract Res 1999; 60: 78-84.
Wargovich MJ. Anticancer properties of fruits and vegetables. Hort Sci 2000; 35: 573-75. DOI: https://doi.org/10.21273/HORTSCI.35.4.573
Dias JS, Ryder E. World vegetable industry: production, breeding, trends. Hort Rev 2011; 38: 299-56. DOI: https://doi.org/10.1002/9780470872376.ch8
Southon S. Increased fruit and vegetable consumption within the EU: Potential health benefits. Food Res Int 2000; 33: 211-17. http://dx.doi.org/10.1016/S0963-9969(00)00036-3 DOI: https://doi.org/10.1016/S0963-9969(00)00036-3
Herrera E, Jimenez R, Aruoma OI, Hercberg S, Sanchez-Garcia I, Fraga C. Aspects of antioxidant foods and supplements in health and disease. Nutr Rev 2009; 67(1): S140-44. http://dx.doi.org/10.1111/j.1753-4887.2009.00177.x DOI: https://doi.org/10.1111/j.1753-4887.2009.00177.x
Prior RL, Cao G. Antioxidant phytochemicals in fruit and vegetables, diet and health implications. Hort Sci 2000; 35: 588-92. DOI: https://doi.org/10.21273/HORTSCI.35.4.588
Hyson, D. The health benefits of fruit and vegetables. A scientific overview for health professionals. Produce for Better Health Foundation. Wilmington DE 2002.
Golberg G, Ed. Plants: diet and health. The Report of a British Nutrition Foundation Task Force. Blackwell Science, Oxford 2003. DOI: https://doi.org/10.1002/9780470774465
IFAVA. Fruit, vegetables and health: a scientific overview. International fruit and vegetable Alliance, Ottawa, Canada; 2006. Available from: www.5aday.co.nz/5adaywebsite/cms_resources/file/Scientific20%Overview.
Keatinge JDH, Waliyar F, Jammadass RH, et al. Re-learning old lessons for the future of food: By bread alone no longer − diversifying diets with fruit and vegetables. Crop Sci 2010; 50(1): 51-62. DOI: https://doi.org/10.2135/cropsci2009.09.0528
Pfeiffer W, McClafferty B. HarvestPlus: Breeding crops for better nutrition. Crop Sci 2007; 57: s88-105. DOI: https://doi.org/10.2135/cropsci2007.09.0020IPBS
Dias JS, Ortiz R. Transgenic vegetable crops: progress, potentials and prospects. Plant Breed Rev 2012; 35: 151-46. DOI: https://doi.org/10.1002/9781118100509.ch4
Ezzati F. Selected major risk factors and global and regional burden of disease. Lancet 2002; 360: 1347-60. http://dx.doi.org/10.1016/S0140-6736(02)11403-6 DOI: https://doi.org/10.1016/S0140-6736(02)11403-6
WHO (World Health Organization). Diet, nutrition and the prevention of chronic diseases. Report of a joint WHO/FAO expert consultation. WHO Tech. Report Ser. 916 World Health Organization, Geneva, Switzerland 2003.
Helen Keller International. Homestead food production model contributes to improved household food security, nutrition and female empowerment - experience from scaling-up programs in Asia (Bangladesh, Cambodia, Nepal and Philippines). Nutr Bull 2010; 8: 1-8.
Kays SJ, Dias JS. Common names of commercially cultivated vegetables of the world in 15 languages. Econom Bot 1995; 49: 115-52. http://dx.doi.org/10.1007/BF02862917 DOI: https://doi.org/10.1007/BF02862917
Kays SJ. Cultivated vegetables of the world: a multilingual onomasticon. Wageningen Academic Publishers, Wageningen, The Netherlands 2011. http://dx.doi.org/10.3920/978-90-8686-720-2 DOI: https://doi.org/10.3920/978-90-8686-720-2
Frei B, Lawson S. Vitamin C and cancer revisited. Proc Natl Acad Sci USA 2008; 105(32): 11037-38. http://dx.doi.org/10.1073/pnas.0806433105 DOI: https://doi.org/10.1073/pnas.0806433105
Packer L, Fuchs J, Eds. Vitamin C in health and disease. Marcel Dekker, New York 1997.
Englard S, Seifter S. The biochemical functions of ascorbic acid. Annu Rev Nutr 1986; 6: 365-406. http://dx.doi.org/10.1146/annurev.nu.06.070186.002053 DOI: https://doi.org/10.1146/annurev.nu.06.070186.002053
Levine M, Rumsey S, Wang Y, Park J, Kwon O, Xu W, Amano N. Vitamin C. In: Ziegler EE, Filer LJ Jr., Eds. Present knowledge in nutrition. 7th ed. ILSI Press, Washington DC. 1996; pp. 146-49.
Jacob RA. The integrated antioxidant system. Nutr Res 1995; 15: 755-66. http://dx.doi.org/10.1016/0271-5317(95)00041-G DOI: https://doi.org/10.1016/0271-5317(95)00041-G
Halpner AD, Handelman GJ, Belmont CA, Harris JM, Blumberg JB. Protection by vitamin C of oxidant-induced loss of vitamin of vitamin E in rat hepatocytes. J Nutr Biochem 1998; 9: 355-59. http://dx.doi.org/10.1016/S0955-2863(98)00019-9 DOI: https://doi.org/10.1016/S0955-2863(98)00019-9
Cuddihy SL, Parker A, Harwood DT, Vissers MC, Winterbourn CC. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells. Free Radic Biol Med 2008; 44(8): 1637-44. http://dx.doi.org/10.1016/j.freeradbiomed.2008.01.021 DOI: https://doi.org/10.1016/j.freeradbiomed.2008.01.021
Valero E, Gonzalez-Sanchez MI, Macia H, Garcia-Carmona F. Computer simulation of the dynamic behavior of the glutathione-ascorbate redox cycle in chloroplasts. Plant Physiol 2009; 149(4): 1958-69. http://dx.doi.org/10.1104/pp.108.133223 DOI: https://doi.org/10.1104/pp.108.133223
Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 2011; 155(1): 2-18. http://dx.doi.org/10.1104/pp.110.167569 DOI: https://doi.org/10.1104/pp.110.167569
Dulloo RM, Mjundar S, Chakravarti RN, Mehta RN, Mahmood A. Effect of vitamin C deficiency in guinea pigs on intestinal functions and chemical composition of brush border membrane. Annu Nutr Metab 1981; 25: 213-20. http://dx.doi.org/10.1159/000176497 DOI: https://doi.org/10.1159/000176497
Singh RB, Ghosh S, Niaz MA, et al. Dietary intake, plasma levels of antioxidant vitamins, and oxidative stress in relation to coronary artery disease in elderly subjects. Am J Cardiol 1995; 76: 1233-38. http://dx.doi.org/10.1016/S0002-9149(99)80348-8 DOI: https://doi.org/10.1016/S0002-9149(99)80348-8
Gale CR, Martyn CN, Winter PD, Cooper C. Vitamin C and risk of death from stroke and coronary heart disease in cohort of elderly people. Br Med J 1995; 310: 1563-66. http://dx.doi.org/10.1136/bmj.310.6994.1563 DOI: https://doi.org/10.1136/bmj.310.6994.1563
Nyyssonen K, Parviainen MT, Salonen R, Toumilehto J, Salonen JT. Vitamin C deficiency and risk of myocardial infarction: prospective population study of men from eastern Finland. Br Med J 1997; 314: 634-38. http://dx.doi.org/10.1136/bmj.314.7081.634 DOI: https://doi.org/10.1136/bmj.314.7081.634
Simon JA, Hudes ES, Brown WS. Serum ascorbic acid and cardiovascular disease prevalence in US adults. Epidemiology 1998; 9: 316-21. http://dx.doi.org/10.1097/00001648-199805000-00017 DOI: https://doi.org/10.1097/00001648-199805000-00017
Wassertheil-Smoller S, Romney SL, Wylie-Rosett J, Slagle S, Miller G, Lucido D, Duttagupt C, Palan PR. Dietary vitamin C and uterine cervical dysplasia. Am J Epidemiol 1981; 114: 714-24. DOI: https://doi.org/10.1093/oxfordjournals.aje.a113243
Freudenheim JL, Graham S, Marshall JR, Haughey BP, Wilkinson G. A case-control study of diet and rectal cancer in western New York. Am J Epidemiol 1990; 131: 612-24. DOI: https://doi.org/10.1093/oxfordjournals.aje.a115545
Howe GR, Benito E, Castelleto R, et al. Dietary intake of fiber and decreased risk of cancers of the colon and rectum: evidence from the combined analysis of 13 control studies. J Natl Cancer Inst 1992; 84: 1887-96. http://dx.doi.org/10.1093/jnci/84.24.1887 DOI: https://doi.org/10.1093/jnci/84.24.1887
Howe GR, Jain M, Miller AB. Dietary factors and risk of pancreatic cancer: results of a Canadian population-based case-control study. Int J Cancer 1990; 45: 604-8. http://dx.doi.org/10.1002/ijc.2910450405 DOI: https://doi.org/10.1002/ijc.2910450405
Fontham ET, Pickle W, Haenszel W, Correa P, Lin YP, Falk RT. Dietary vitamins A and C and lung cancer risk in Louisiana. Cancer 1988; 62: 2267-73. http://dx.doi.org/10.1002/1097-0142(19881115)62:10<2267::AID-CNCR2820621033>3.0.CO;2-E DOI: https://doi.org/10.1002/1097-0142(19881115)62:10<2267::AID-CNCR2820621033>3.0.CO;2-E
O’Toole P, Lombardi M. Vitamin C and gastric cancer: supplements for some or fruit for all? Gut 1996; 39: 345-7. http://dx.doi.org/10.1136/gut.39.3.345 DOI: https://doi.org/10.1136/gut.39.3.345
Delamere NA. Ascorbic acid and the eye. Subcell Biochem 1996; 25: 313-29. http://dx.doi.org/10.1007/978-1-4613-0325-1_16 DOI: https://doi.org/10.1007/978-1-4613-0325-1_16
Frei BT, England L, Ames BN. Ascorbat on an outstanding antioxidant in human blood plasma. Proc Nat Acad Sci USA 1989; 86: 6377-81. http://dx.doi.org/10.1073/pnas.86.16.6377 DOI: https://doi.org/10.1073/pnas.86.16.6377
Jialal I, Vega GI, Grundy SM. Physiologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein. Atherosclerosis 1990; 82: 185-91. http://dx.doi.org/10.1016/0021-9150(90)90039-L DOI: https://doi.org/10.1016/0021-9150(90)90039-L
Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 2009; 46(6): 719-30. http://dx.doi.org/10.1016/j.freeradbiomed.2008.12.018 DOI: https://doi.org/10.1016/j.freeradbiomed.2008.12.018
Bremner JD, McCaffery P. The neurobiology of retinoic acid in affective disorders. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(2): 315-31. http://dx.doi.org/10.1016/j.pnpbp.2007.07.001 DOI: https://doi.org/10.1016/j.pnpbp.2007.07.001
WFP (World Food Programme). Annual Report. WFP- UN, Washington 2007.
UNICEF. Vitamin and Mineral Deficiency. A Global Progress Report, UNICEF 2010.
Britton G, Khachik F. Carotenoids in Food. In: Britton G, Pfander H, Liaaen-Jensens S, Eds. Carotenoids. Birkhäuser, Basel 2009; pp. 45-66. http://dx.doi.org/10.1007/978-3-7643-7501-0_3 DOI: https://doi.org/10.1007/978-3-7643-7501-0_3
Olson JA. Carotenoids. In: Shils ME, Olson JA, Shick M, Ross AC, Eds. Modern nutrition in health and disease. 9th ed. Williams & Wilkins. Baltimore, MD 1999; pp. 525-41.
Pasquali MA, Gelain DP, Zanotto-Filho A, et al. Retinol and retinoic acid modulate catalase activity in Sertoli cells by distinct and gene expression-independent mechanisms. Toxicol In Vitro 2008; 22(5): 1177-83. http://dx.doi.org/10.1016/j.tiv.2008.03.007 DOI: https://doi.org/10.1016/j.tiv.2008.03.007
Ramakrishn V, Jailkhani R. Oxidative stress in non-insulin-dependent diabetes mellitus (NIDDM) patients. Acta Diabetol 2008; 45(1): 41-6. http://dx.doi.org/10.1007/s00592-007-0018-3 DOI: https://doi.org/10.1007/s00592-007-0018-3
Botella-Carretero JI, Balsa JA, Vazquez C, Peromingo R, Diaz-Enriquez M, Escobar-Morreale HF. Retinol and alpha-tocopherol in morbid obesity and nonalcoholic fatty liver disease. Obes Surg 2010; 20(1): 69-76. http://dx.doi.org/10.1007/s11695-008-9686-5 DOI: https://doi.org/10.1007/s11695-008-9686-5
Kao SH, Chao HT, Chen HW, Hwang TI, Liao TL, Wei YH. Increase of oxidative stress in human sperm with lower motility. Fertil Steril 2008; 89(5): 1183-90. http://dx.doi.org/10.1016/j.fertnstert.2007.05.029 DOI: https://doi.org/10.1016/j.fertnstert.2007.05.029
Michikawa T, Nishiwaki Y, Kikuchi Y, et al. Serum Levels of Retinol and Other Antioxidants for Hearing Impairment among Japanese Older Adults. J Gerontology Series-Biol Sci Med Sci 2009; 64(8): 910-15. http://dx.doi.org/10.1093/gerona/glp038 DOI: https://doi.org/10.1093/gerona/glp038
Di Mascio P, Kaiser S, Sies H. Lycopene as the most effective biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 1989; 274: 532-38. http://dx.doi.org/10.1016/0003-9861(89)90467-0 DOI: https://doi.org/10.1016/0003-9861(89)90467-0
Agarwal S, Rao AK. Tomato lycopene and its role in human health and chronic diseases. CAMJ 2000; 163(6): 739-44.
Rao AV, Ed. Tomatoes, Lycopene and Human Health Preventing Chronic Diseases. Caledonian Science Press. Stranraer, Scotland 2006.
Gaziano JM, Manson JE, Branch LG, Colditz GA, Willet WC, Buring JE. A prospective study of consumption of carotenoids in fruits and vegetables and decreased cardiovascular mortality in elderly. Ann Epidemiol 1995; 5: 55-60. http://dx.doi.org/10.1016/1047-2797(94)00090-G DOI: https://doi.org/10.1016/1047-2797(94)00090-G
Johnson EJ, Hammond BR, Yeum KJ, et al. Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Am J Clin Nutr 2000; 71(6): 1555-62. DOI: https://doi.org/10.1093/ajcn/71.6.1555
Niizu PY, Rodriguez-Amaya DB. Flowers and leaves of Tropaeolum majus L. as rich sources of lutein. J Food Sci 2005; 70 (9): S605-9. http://dx.doi.org/10.1111/j.1365-2621.2005.tb08336.x DOI: https://doi.org/10.1111/j.1365-2621.2005.tb08336.x
SanGiovanni JP, Chew EY, Clemons TE, et al. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case control study: AREDS Report No. 22. Arch Ophthalmol 2007; 125(9): 1225-32. http://dx.doi.org/10.1001/archopht.125.9.1225 DOI: https://doi.org/10.1001/archopht.125.9.1225
Van het Hof KH, West CE, Weststrate JA, Hautvast JG. Dietary factors that affect the bioavailability of carotenoids. J Nutr 2000; 130: 503-6. DOI: https://doi.org/10.1093/jn/130.3.503
Roels OA, Trout M, Dujacquier R. Carotene balances on boys in Ruanda where vitamin A deficiency is prevalent. J Nutr 1958; 65: 115-27. DOI: https://doi.org/10.1093/jn/65.1.115
Gartner C, Stahl W, Sies H. Lycopene is more bioavailable from tomato paste than from fresh tomato. Am J Clin Nutr 1997; 66: 116-22. DOI: https://doi.org/10.1093/ajcn/66.1.116
Unlu NZ, Bohn T, Francis DM, Nagaraja HN, Clinton SK, Schwartz SJ. Lycopene from heat-induced cis-isomer-rich tomato sauce is more bioavailable than from all-trans-rich tomato sauce in human subjects. Br J Nutr 2007; 98: 140-6. http://dx.doi.org/10.1017/S0007114507685201 DOI: https://doi.org/10.1017/S0007114507685201
Van het Hof KH, Brouwer IA, et al. Bioavailability of lutein from vegetables in 5 times higher than that of β-carotene. Am J Clin Nutr 1999; 70: 261-68. DOI: https://doi.org/10.1093/ajcn.70.2.261
Ravaglia G, Forti P, Lucicesare A, et al. Plasma tocopherols and risk of cognitive impairment in an elderly Italian cohort. Am J Clin Nutr 2008; 87(5): 1306-13. DOI: https://doi.org/10.1093/ajcn/87.5.1306
Atkinson J, Epand RF, Epand RM. Tocopherols and tocotrienols in membranes: a critical review. Free Radic Biol Med 2008; 44(5): 739-64. http://dx.doi.org/10.1016/j.freeradbiomed.2007.11.010 DOI: https://doi.org/10.1016/j.freeradbiomed.2007.11.010
Naumowicz M, Petelska AD, Figaszewski ZA. Impedance spectroscopic investigation of the interactions between phosphatidylethanolamine and [alpha]-tocopherol in bilayer membranes. Electrochimica Acta 2009; 54(3): 1089-94. http://dx.doi.org/10.1016/j.electacta.2008.08.051 DOI: https://doi.org/10.1016/j.electacta.2008.08.051
Devaraj S, Leonard S, Traber MG, Jialal I. Gamma-tocopherol supplementation alone and in combination with alpha-tocopherol alters biomarkers of oxidative stress and inflammation in subjects with metabolic syndrome. Free Radic Biol Med 2008; 44(6): 1203-8. http://dx.doi.org/10.1016/j.freeradbiomed.2007.12.018 DOI: https://doi.org/10.1016/j.freeradbiomed.2007.12.018
Grattagliano I, Palmieri VO, Portincasa P, Moschetta A, Palasciano G. Oxidative stress-induced risk factors associated with the metabolic syndrome: a unifying hypothesis. J Nutr Biochem 2008; 19(8): 491-504. http://dx.doi.org/10.1016/j.jnutbio.2007.06.011 DOI: https://doi.org/10.1016/j.jnutbio.2007.06.011
Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome. Life Sci 2009; 84(22): 705-12. http://dx.doi.org/10.1016/j.lfs.2009.02.026 DOI: https://doi.org/10.1016/j.lfs.2009.02.026
Chung MY, Yeung SF, Park HJ, Volek JS, Bruno RS. Dietary alpha- and gamma-tocopherol supplementation attenuates lipopolysaccharide-induced oxidative stress and inflammatory-related responses in an obese mouse model of nonalcoholic steatohepatitis. J Nutr Biochem 2010; 21(12): 1200-6. http://dx.doi.org/10.1016/j.jnutbio.2009.10.006 DOI: https://doi.org/10.1016/j.jnutbio.2009.10.006
Sen CK, Khanna S, Roy S. Tocotrienol: the natural vitamin E to defend the nervous system?. Ann New York Acad Sci 2006a; 1031: 127-42. http://dx.doi.org/10.1196/annals.1331.013 DOI: https://doi.org/10.1196/annals.1331.013
Traber MG, Atkinson J. Vitamin E: antioxidant and nothing more. Free Radic Biol Med 2007; 43 (1): 4-15. http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.024 DOI: https://doi.org/10.1016/j.freeradbiomed.2007.03.024
Traber MG, Packer L. Vitamin E: beyond antioxidant function. Am J Clin Nutr 1995; 62(6): 1501S-9S. DOI: https://doi.org/10.1093/ajcn/62.6.1501S
Traber MG, Sies H. Vitamin E in humans: demand and delivery. Ann Rev Nutr 1996; 16: 321-47. http://dx.doi.org/10.1146/annurev.nu.16.070196.001541 DOI: https://doi.org/10.1146/annurev.nu.16.070196.001541
Sen CK, Khanna S, Roy S. Tocotrienols: vitamin E beyond tocopherols. Life Sci 2006b; 78(18): 2088-98. http://dx.doi.org/10.1016/j.lfs.2005.12.001 DOI: https://doi.org/10.1016/j.lfs.2005.12.001
Das S, Lekli I, Das M, et al. Cardioprotection with palm oil tocotrienols: comparison of different isomers". Am J Physiol Heart and Circulatory Physiol 2008; 294(2): 970-8. http://dx.doi.org/10.1152/ajpheart.01200.2007 DOI: https://doi.org/10.1152/ajpheart.01200.2007
Khanna S, Roy S, Slivka A, et al. Neuroprotective properties of the natural vitamin E α-tocotrienol. Stroke 2005; 36(10): 2258-64. DOI: https://doi.org/10.1161/01.STR.0000181082.70763.22
Ozer NK, Boscoboniki D, Azzi A. New roles of low-density lipoproteins and vitamin E in the pathogenesis of atherosclerosis. Biochem Mol Biol Int 1995; 35: 117-24.
Azzi A, Boscoboinik D, Marilley D, Ozer NK, Stauble B, Tasinato A. Vitamin E: a sensor and an information transducer of the cell oxidation state. Am J Clin Nutr 1995; 62: 1337S-46S. DOI: https://doi.org/10.1093/ajcn/62.6.1337S
Kowdley KV, Mason JB, Meydani SN, Cornwall S, Grand RJ. Vitamin E deficiency and impaired cellular immunity related to intestinal fat malabsorption. Gastroenterology 1992; 102(6): 2139-42. DOI: https://doi.org/10.1016/0016-5085(92)90344-X
Brigelius-Flohé R, Davies KJ. Is vitamin E an antioxidant, a regulator of signal transduction and gene expression, or a 'junk' food? Comments on the two accompanying papers: "Molecular mechanism of alpha-tocopherol action" by Azzi, A. and "Vitamin E, antioxidant and nothing more" by M. Traber and J. Atkinson". Free Radic Biol Med 2007; 43(1): 2-3. DOI: https://doi.org/10.1016/j.freeradbiomed.2007.05.016
Gey KF, Puska P. Plasma vitamins E and A inversely correlated to mortality from ischemic heart disease in cross-cultured epidemiology. Ann New York Acad Sci 1989; 570: 268-82. http://dx.doi.org/10.1111/j.1749-6632.1989.tb14926.x DOI: https://doi.org/10.1111/j.1749-6632.1989.tb14926.x
Dowd P, Zheng ZB. On the mechanism of the anti-clotting action of vitamin E quinone. Proc Natl Acad Sci USA 1995; 92(18): 8171-5. http://dx.doi.org/10.1073/pnas.92.18.8171 DOI: https://doi.org/10.1073/pnas.92.18.8171
Devaraj S, Hugou I, Jialal I. Tocopherol decreases CD36 expression in human monocyte-derived macrophages. J Lipid Res 2001; 42(4): 521-7. DOI: https://doi.org/10.1016/S0022-2275(20)31160-3
Srivastava US, Goswami T. Biochemical changes in progressive muscular dystrophy XV. Distribution of radioactive glutamate and proximate composition of various components of skeletal muscle and liver in vitamin E deficient dystrophy rabbits and 129/RJ(dy/dy) mice. Expt Biol 1988; 47: 185-93.
Muller DP. Vitamin E and neurological function. Review. Mol Nutr Food Res 2010; 54 (5): 710-8. http://dx.doi.org/10.1002/mnfr.200900460 DOI: https://doi.org/10.1002/mnfr.200900460
National Research Council (USA). Committee on Diet and Health, National Academy of Sciences. Diet and Health. National. Academies Press, Washington, DC 1989.
USDA (United States Department of Agriculture) USDA National Nutrient Database for Standard Reference, Release 20. USDA; 2009. Available from: http: //www.nal.usda.gov/fnic/foodcomp/Data/SR20/nutrlist/sr20w309.pdf.
Scott J, Releille F, Fletcher J. Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J Sci Food Agr 2000; 80: 795-824. http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<795::AID-JSFA599>3.0.CO;2-K DOI: https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<795::AID-JSFA599>3.3.CO;2-B
Ames BN. DNA damage from micronutrient deficiencies is likely to be major cause of cancer. Muta Res 2001; 475: 7-20. http://dx.doi.org/10.1016/S0027-5107(01)00070-7 DOI: https://doi.org/10.1016/S0027-5107(01)00070-7
Weinstein SJ, Hartman TJ, Stolzenberg-Solomon R. Null association between prostate cancer and serum folate, vitamin B6, vitamin B12, and homocysteine. Cancer Epidem Biomarkers Prev 2003; 12(11): 1271-72.
Oakley GP, Adams MJ, Dickinson CM. More folic acid for everyone, now. J Nutr 1996; 126: 751S-55S.
Mulinare J, Cordero JF, Erickson JD, Berry RJ. Periconceptional use of multivitamins and the occurrence of neural tube defects. J Am Med Assoc 1988; 260(21): 3141-45. http://dx.doi.org/10.1001/jama.1988.03410210053035 DOI: https://doi.org/10.1001/jama.260.21.3141
Milunsky A, Jick H, Jick SS, et al. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. J Am Med Assoc 1989; 262(20): 2847-52. http://dx.doi.org/10.1001/jama.1989.03430200091032 DOI: https://doi.org/10.1001/jama.262.20.2847
Scholl TO, Johnson WG. Folic acid: influence on the outcome of pregnancy. Am J Clin Nutr 2000; 71(5): 1295S-1303S. DOI: https://doi.org/10.1093/ajcn/71.5.1295s
Quinn CT, Griener JC, Bottiglieri T, Hyland K, Farrow A, Kamen BA. Elevation of homocysteine and excitatory amino acid neurotransmitters in the CSF of children who receive methotrexate for the treatment of cancer. J Clin Oncol 1997; 15: 2800-6. DOI: https://doi.org/10.1200/JCO.1997.15.8.2800
Stewart CP, Christian P, Schulze KJ, Leclerq SC, West Jr KP, Khatry SK. Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal. J Nutr 2009; 139(8): 1575-81. http://dx.doi.org/10.3945/jn.109.106666 DOI: https://doi.org/10.3945/jn.109.106666
Wilton DC, Foureur MJ. A survey of folic acid use in primigravid women. Women Bir J Austral Coll Midwives 2010; 23(2): 67-73. http://dx.doi.org/10.1016/j.wombi.2009.09.001 DOI: https://doi.org/10.1016/j.wombi.2009.09.001
Mason JB. Folate and colonic carcinogenesis: searching for a mechanistic understanding. J Nutr Biochem 1994; 5: 170-5. http://dx.doi.org/10.1016/0955-2863(94)90068-X DOI: https://doi.org/10.1016/0955-2863(94)90068-X
Sanjoaquin MA, Allen N, Couto E, Roddam AW, Key TJ. Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer 2005; 113 (5): 825-8. http://dx.doi.org/10.1002/ijc.20648 DOI: https://doi.org/10.1002/ijc.20648
Blount BC, Mack MM, Wehr C, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci USA 1997; 94: 3290-5. http://dx.doi.org/10.1073/pnas.94.7.3290 DOI: https://doi.org/10.1073/pnas.94.7.3290
Imasa MS, Gomez NT, Nevado Jr JB. Folic acid-based intervention in non-ST elevation acute coronary syndromes. Asian Cardiov Thoracic Ann 2009; 17(1): 13-21. DOI: https://doi.org/10.1177/0218492309102494
Terwecoren A, Steen E, Benoit D, Boon P, Hemelsoet D. Ischemic stroke and hyperhomocysteinemia: truth or myth?. Acta Neurologica Belgica 2009; 109(3): 181-8.
Bazzano LA. Folic acid supplementation and cardiovascular disease: the state of the art. Am J Med Sci 2009; 338(1): 48-9. http://dx.doi.org/10.1097/MAJ.0b013e3181aaefd6 DOI: https://doi.org/10.1097/MAJ.0b013e3181aaefd6
Bazzano LA. No effect of folic acid supplementation on cardiovascular events, cancer or mortality after 5 years in people at increased cardiovascular risk, although homocysteine levels are reduced. Evidence-Based Med 2011; 16(4): 117-8. http://dx.doi.org/10.1136/ebm1204 DOI: https://doi.org/10.1136/ebm1204
Johansson M, Appleby PN, Allen NE, et al. Circulating concentrations of folate and vitamin B12 in relation to prostate cancer risk: results from the European Prospective Investigation into Cancer and Nutrition study. Cancer Epidem Biomar Prev 2008; 17(2): 279-85. http://dx.doi.org/10.1158/1055-9965.EPI-07-0657 DOI: https://doi.org/10.1158/1055-9965.EPI-07-0657
Figueiredo JC, Grau MV, Haile RW, et al. Folic acid and risk of prostate cancer: results from a randomized clinical trial. J Natl Cancer Inst 2009; 101(6): 432-5. http://dx.doi.org/10.1093/jnci/djp019 DOI: https://doi.org/10.1093/jnci/djp019
Ulrich CM. Folate and cancer prevention: a closer look at a complex picture. Am J Clin Nutr 2007; 86(2): 271-3. DOI: https://doi.org/10.1093/ajcn/86.2.271
Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 1997; 337(10): 670-6. http://dx.doi.org/10.1056/NEJM199709043371003 DOI: https://doi.org/10.1056/NEJM199709043371003
Ross AC, Taylor CL, Yaktine AL, Del Valle HB. Eds. Dietary Reference Intakes for Calcium and Vitamin D. Institute of Medicine. Food and Nutrition Board. Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. National Academies Press. Washington, DC 2011.
Bihl G, Meyers A. Recurrent renal stone disease-advances in pathogenesis and clinical management. Lancet 2001; 358: 651-6. http://dx.doi.org/10.1016/S0140-6736(01)05782-8 DOI: https://doi.org/10.1016/S0140-6736(01)05782-8
Hall WD, Pettinger M, Oberman A. Risk factors for kidney stones in older women in the Southern United States. Am J Med Sci 2001; 322(1): 12-8. http://dx.doi.org/10.1097/00000441-200107000-00003 DOI: https://doi.org/10.1097/00000441-200107000-00003
Raboy V. Seeds for a better future: low phytic grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 2001; 6: 458-62. http://dx.doi.org/10.1016/S1360-1385(01)02104-5 DOI: https://doi.org/10.1016/S1360-1385(01)02104-5
Institute of Medicine. Dietary reference intakes: the essential guide to nutrient requirements. National Academies Press. Washington, DC; 2006.
Grases F, Simonet BM, Vucenik I, Prieto RM, Costa-Bauza A, March JG, Shamsuddin AM. Absorption and excretion of orally administered inositol hexaphosphate (IP(6) or phytate) in humans. Biofactors 2001; 15: 53-61. http://dx.doi.org/10.1002/biof.5520150105 DOI: https://doi.org/10.1002/biof.5520150105
Dias JS. The Portuguese tronchuda cabbage and galega kale landraces: a historical review. Genet Resour Crop Evol 1995; 42: 179-94. http://dx.doi.org/10.1007/BF02539521 DOI: https://doi.org/10.1007/BF02539521
Monteiro AA, Rosa E. Caldo verde: a story of Portuguese brassicas. Chronica Horticulturae 2008; 38(1): 9-11.
Nelson DL, Cox MM. Lehninger, Principles of Biochemistry. 4th Ed. W.H. Freeman and Company, New York 2005.
Guerrera MP, Volpe SL, Mao JJ. Therapeutic uses of magnesium. Am Fam Physician 2009; 80(2): 157-62.
Bartlett HE, Eperjesi F. Nutritional supplementation for type 2 diabetes: a systematic review. Ophthalmic Physiol Opt 2008; 28(6): 503-23. http://dx.doi.org/10.1111/j.1475-1313.2008.00595.x DOI: https://doi.org/10.1111/j.1475-1313.2008.00595.x
Kim DJ, Xun P, Liu K, et al. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care 2010; 33(12): 2604-10. http://dx.doi.org/10.2337/dc10-0994 DOI: https://doi.org/10.2337/dc10-0994
Johnson S. The multifaceted and widespread pathology of magnesium deficiency. Med Hypotheses 2001; 56(2): 163-70. http://dx.doi.org/10.1054/mehy.2000.1133 DOI: https://doi.org/10.1054/mehy.2000.1133
Champagne CM. Magnesium in hypertension, cardiovascular disease, metabolic syndrome, and other conditions: a review. Nutr Clin Pract 2008; 23(2): 142-51. http://dx.doi.org/10.1177/0884533608314533 DOI: https://doi.org/10.1177/0884533608314533
Eby GA, Eby KL. Magnesium for treatment-resistant depression: a review and hypothesis. Med Hypothesis 2010; 74(4): 649-60. http://dx.doi.org/10.1016/j.mehy.2009.10.051 DOI: https://doi.org/10.1016/j.mehy.2009.10.051
Hijazi N, Abalkhail B, Seaton A. Diet and childhood asthma in a society in transition: a study in urban and rural Saudi Arabia. Thorax 2000; 55: 775-9. http://dx.doi.org/10.1136/thorax.55.9.775 DOI: https://doi.org/10.1136/thorax.55.9.775
Ciarallo L, Brousseau D, Reinert S. Higher-dose intravenous magnesium therapy for children with moderate to severe acute asthma. Arch Ped Adol Med 2000; 154(10): 979-83. DOI: https://doi.org/10.1001/archpedi.154.10.979
Bo S, Pisu E. Role of dietary magnesium in cardiovascular disease prevention, insulin sensitivity and diabetes. Curr Opin Lipidol 2008; 19(1): 50-6. http://dx.doi.org/10.1097/MOL.0b013e3282f33ccc DOI: https://doi.org/10.1097/MOL.0b013e3282f33ccc
Abdelwahab M, Youssef S, Aly A, Elfiki S, Elenany N, Abbas M. A simple calibration of a whole-body counter for the measurement of total body potassium in humans. Int J Radiat Applic Instrumen Part A Appl Radiat Isotopes 1992; 43(10): 1285-9. http://dx.doi.org/10.1016/0883-2889(92)90208-V DOI: https://doi.org/10.1016/0883-2889(92)90208-V
Campbell N. Biology. Benjamin/Cummings Pub. Co. Menlo Park, California 1987.
D'Elia L, Barba G, Cappuccio F, Strazzullo P. Potassium intake, stroke, and cardiovascular disease: a meta-analysis of prospective studies. Coll Cardiol 2011; 57(10): 1210-9. http://dx.doi.org/10.1016/j.jacc.2010.09.070 DOI: https://doi.org/10.1016/j.jacc.2010.09.070
Slonim AD, Pollack MM. Potassium. Pediatric critical care medicine. Williams & Wilkins, Lippincott 2006.
WHO (World Health Organization). Worldwide prevalence of anaemia 1993-2005 WHO global database on anaemia. Benoist B, McLean E, Ines Egli I, Cogswell M, Eds. WHO, Geneva, Switzerland 2008.
Milman N. Serum ferritin in Danes: studies of iron status from infancy to old age, during blood donation and pregnancy. Int J Hematol 1996; 63 (2): 103-35. http://dx.doi.org/10.1016/0925-5710(95)00426-2 DOI: https://doi.org/10.1016/0925-5710(95)00426-2
Hoppe M, Hulthén L, Hallberg L. The relative bioavailability in humans of elemental iron powders for use in food fortification. Eur J Nutr 2005; 45(1): 37-44. http://dx.doi.org/10.1007/s00394-005-0560-0 DOI: https://doi.org/10.1007/s00394-005-0560-0
Pineda O, Ashmead HD. Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition 2001; 17(5): 381-4. http://dx.doi.org/10.1016/S0899-9007(01)00519-6 DOI: https://doi.org/10.1016/S0899-9007(01)00519-6
Haddad EH, Berk LS, Kettering JD, Hubbard RW, Peters WR. Dietary intake and biochemical, hematologic, and immune status of vegans compared with nonvegetarians. Am J Clin Nutr 1999; 70: 586S-93S. DOI: https://doi.org/10.1093/ajcn/70.3.586s
Obeid R, Geisel J, Schorr H. The impact of vegetarianism on some haematological parameters. Eur J Haematol 2002; 69: 275-9. http://dx.doi.org/10.1034/j.1600-0609.2002.02798.x DOI: https://doi.org/10.1034/j.1600-0609.2002.02798.x
Hallberg L. Bioavailability of dietary iron in man. Ann Rev Nutr 1981; 1: 123-47. http://dx.doi.org/10.1146/annurev.nu.01.070181.001011 DOI: https://doi.org/10.1146/annurev.nu.01.070181.001011
Gleerup A, Rossander Hulthen L, Gramatkovski E. Iron absorption from the whole diet: comparison of the effect of two different distributions of daily calcium intake. Am J Clin Nutr 1995; 61: 97-104. DOI: https://doi.org/10.1093/ajcn/61.1.97
Hambidge KM, Krebs NF. Zinc deficiency: a special challenge. J Nutr 2007; 137(4): 1101-5. DOI: https://doi.org/10.1093/jn/137.4.1101
Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants. New Phytol 2007; 173(4): 677-702. http://dx.doi.org/10.1111/j.1469-8137.2007.01996.x DOI: https://doi.org/10.1111/j.1469-8137.2007.01996.x
Brandt EG, Hellgren M, Brinck T, Bergman T, Edholm O. Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site. Phys Chem Chem Phys 2009; 11(6): 975-83. http://dx.doi.org/10.1039/b815482a DOI: https://doi.org/10.1039/B815482A
Prasad AS. Zinc deficiency: has been known of for 40 years but ignored by global health organisations. Br Med J 2003; 326: 409-10. http://dx.doi.org/10.1136/bmj.326.7386.409 DOI: https://doi.org/10.1136/bmj.326.7386.409
WHO. The impact of zinc supplementation on childhood mortality and severe morbidity. World Health Organization, Geneva, Switzerland; 2007. Available from: http: //www.who.int/child_adolescent_health/documents/zinc_mortality/en/index.html.
Shrimpton R, Gross R, Darnton-Hill I, Young M. Zinc deficiency: what are the most appropriate interventions? Br Med J 2005; 330: 347-9. http://dx.doi.org/10.1136/bmj.330.7487.347 DOI: https://doi.org/10.1136/bmj.330.7487.347
Ensminger AH, Konlande JE. Foods & Nutrition Encyclopedia. 2nd ed. CRC Press. Boca Raton, Florida 1993.
Freeland-Graves JH, Bodzy PW, Epright MA. Zinc status of vegetarians. J Am Dietetic Assoc 1980; 77: 655-61. DOI: https://doi.org/10.1016/S1094-7159(21)03587-X
Rayman MP. The importance of selenium to human health. Lancet 2000; 356: 233-41. http://dx.doi.org/10.1016/S0140-6736(00)02490-9 DOI: https://doi.org/10.1016/S0140-6736(00)02490-9
Esaki N, Nakamura T, Tanaka H, Soda K. Selenocysteine lyase, a novel enzyme that specifically acts on selenocyteine. Mammalian distribution and purification and properties of pig liver enzyme. J Biol Chem 1982; 257: 4386-91. DOI: https://doi.org/10.1016/S0021-9258(18)34734-3
Swanson CA, Patterson BH, Levander OA, et al. Human [74Se]selenomethionine metabolism: a kinetic model. Am J Clin Nutr 1991; 54: 917-26. DOI: https://doi.org/10.1093/ajcn/54.5.917
Lane HW, Medina D. Mode of action of selenium inhibition of 7, 12dimethylbenz[a]anthrancene-induced mouse mammary tumorogenesis. J Natl Cancer Inst 1985; 75: 674-9.
Ip C. Chemopreventive role of selenium in carcinogenesis. J Am Coll Toxicol 1986; 5: 7-20. http://dx.doi.org/10.3109/10915818609140732 DOI: https://doi.org/10.3109/10915818609140732
Burguera JL, Burguera M, Gallignani M, Alarcón OM, Burguera JA. Blood serum selenium in the province of Mérida, Venezuela, related to sex, cancer incidence and soil selenium content. J Trace Elements Electrolytes Health Dis 1990; 4(2): 73-7.
Russo MW, Murray SC, Wurzelmann JI, Woosley JT, Sandler RS. Plasma selenium levels and the risk of colorectal adenomas. Nutr Cancer 1997; 28(2): 125-9. http://dx.doi.org/10.1080/01635589709514563 DOI: https://doi.org/10.1080/01635589709514563
Knekt P, Marniemi J, Teppo L, Heliövaara M, Aromaa A. Is low selenium status a risk factor for lung cancer?. Am J Epidem 1998; 148(10): 975-82. http://dx.doi.org/10.1093/oxfordjournals.aje.a009574 DOI: https://doi.org/10.1093/oxfordjournals.aje.a009574
Young KJ, Lee PN. Intervention studies on cancer. Eur J Cancer Prev 1999; 8(2): 91-103. http://dx.doi.org/10.1097/00008469-199904000-00003 DOI: https://doi.org/10.1097/00008469-199904000-00003
Helzlsouer KJ, Alberg AJ, Norkus EP, Morris JS, Hoffman SC, Comstock GW. Prospective study of serum micronutrients and ovarian cancer. J Natl Cancer Inst 1996; 88: 32-7. http://dx.doi.org/10.1093/jnci/88.1.32 DOI: https://doi.org/10.1093/jnci/88.1.32
Yoshizawa K, Willett WC, Morris SJ, et al. Study of pre-diagnostic selenium level in toenails and the risk of advanced prostate cancer. J Natl Cancer Inst 1999; 90: 1219-24. http://dx.doi.org/10.1093/jnci/90.16.1219 DOI: https://doi.org/10.1093/jnci/90.16.1219
Clark LC, Combs GF, Turnbull BW. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 1996; 276(24): 1957-63. http://dx.doi.org/10.1001/jama.1996.03540240035027 DOI: https://doi.org/10.1001/jama.276.24.1957
Tsavachidou D, McDonnell TJ, Wen S. Selenium and Vitamin E: Cell Type- and Intervention-Specific Tissue Effects in Prostate Cancer. Nat Cancer Instit 2009; 101(5): 306-20. http://dx.doi.org/10.1093/jnci/djn512 DOI: https://doi.org/10.1093/jnci/djn512
Overcast JD, Ensley AE, Buccafusco CJ, et al. Evaluation of cardiovascular parameters of a selenium-based antihypertensive using pulsed Doppler ultrasound. J Cardiovasc Pharmacol 2001; 38: 337-46. http://dx.doi.org/10.1097/00005344-200109000-00002 DOI: https://doi.org/10.1097/00005344-200109000-00002
Knekt P, Heliovaara M, Aho K, Alfthan G, Marniemi J, Aromaa A. Serum selenium, serum alpha-tocopherol, and the risk of rheumatoid arthritis. Epidemiology 2000; 11: 402-5. http://dx.doi.org/10.1097/00001648-200007000-00007 DOI: https://doi.org/10.1097/00001648-200007000-00007
Keshan Disease Research Group. Observation on effect of sodium selenite in prevention of Keshan disease. China Med J 1979; 92: 471-6.
Yang GQ, Ge RK, Chen J, Chen X. Selenium-related endemic diseases and the daily selenium requirement of humans. World Rev Nutr Diet 1988; 55: 98-152. DOI: https://doi.org/10.1159/000415560
Moreno-Reyes R, Mathieu J, Vanderpas M, et al. Selenium and iodine supplementation of rural Tibetan children affected by Kashin-Beck osteoarthropathy. Am J Clin Nutr 2003; 78(1): 137-44. DOI: https://doi.org/10.1093/ajcn/78.1.137
Mazokopakis EE, Papadakis JA, Papadomanolaki MG, et al. Effects of 12 months treatment with L-selenomethionine on serum anti-TPO Levels in Patients with Hashimoto's thyroiditis. Thyroid 2007; 17 (7): 609-12. http://dx.doi.org/10.1089/thy.2007.0040 DOI: https://doi.org/10.1089/thy.2007.0040
Mueller A, Pallauf J. Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem 2006; 17: 548-60. http://dx.doi.org/10.1016/j.jnutbio.2005.10.006 DOI: https://doi.org/10.1016/j.jnutbio.2005.10.006
Bleys J, Navas-Acien A, Guallar E. Serum selenium and diabetes in U.S. adults. Diabet Care 2007; 30: 829-34. http://dx.doi.org/10.2337/dc06-1726 DOI: https://doi.org/10.2337/dc06-1726
Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E. Serum selenium concentrations and diabetes in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2003-2004. Environ. Health Perspect 2009; 117: 1409-13. DOI: https://doi.org/10.1289/ehp.0900704
Akbaraly TN, Arnaud J, Rayman MP, et al. Plasma selenium and risk of dysglycemia in an elderly French population: Results from the prospective Epidemiology of Vascular Aging Study. Nutr Metabolism 2010; 7: 21-8. http://dx.doi.org/10.1186/1743-7075-7-21 DOI: https://doi.org/10.1186/1743-7075-7-21
Dreher ML. Dietary fiber overview. In: Cho SS, Dreher ML, Eds. Handbook of dietary fiber. Marcel Dekker, New York 2001. http://dx.doi.org/10.1201/9780203904220.pt1 DOI: https://doi.org/10.1201/9780203904220.pt1
Anderson JW, Deakins DA, Floore TL, Smith BM, Whitis SE. Dietary fiber and coronary heart disease. Crit Rev Food Sci Nutr 1990; 29: 95-147. http://dx.doi.org/10.1080/10408399009527518 DOI: https://doi.org/10.1080/10408399009527518
Anderson JW, Bridges SR. Dietary fiber content of selected foods. Am J Clin Nutr 1988; 47: 440-47. DOI: https://doi.org/10.1093/ajcn/47.3.440
Buttriss JL, Stokes CS. Dietary fibre and health: An overview. Nutr Bull 2008; 33(3): 186-200. http://dx.doi.org/10.1111/j.1467-3010.2008.00705.x DOI: https://doi.org/10.1111/j.1467-3010.2008.00705.x
Marlett JA. Content and composition of dietary fiber in 117 frequently consumed foods. J Am Diet Assoc 1992; 92: 175-86. DOI: https://doi.org/10.1016/S0002-8223(21)00587-3
Blundell JE, Burley VJ. Satiation, satiety and the action of fibre on food intake. Int J Obes 1987; 11: 9-25
Harold M, Reeves R, Blze M, Guthrie R, Guthrie D. Effect of dietary fiber in insulin-dependent diabetics: insulin requirements and serum lipids. J Am Diet Assoc 1985; 85: 1455-61. DOI: https://doi.org/10.1016/S0002-8223(21)03822-0
Rouse LL, Beilin LJ, Armstrong BK, Vandongen R. Blood pressure lowering effect of a vegetarian diet: controlled trial in normotensive subjects. Lancet 1983; 1: 5-10. http://dx.doi.org/10.1016/S0140-6736(83)91557-X DOI: https://doi.org/10.1016/S0140-6736(83)91557-X
Le Marchand L, Hankin JH, Wilksens LR, Kolonel LN, Englyst HN, Lyu LC. Dietary fiber and colorectal cancer risk. Epidemiology 1997; 8: 658-65. DOI: https://doi.org/10.1097/00001648-199711000-00012
Slavin JL. Resistant oligosaccharides. In: Cho SS, Drecher ML, Eds. Handbook of dietary fiber. Marcel Dekker, New York 2001; pp.125-45. DOI: https://doi.org/10.1201/9780203904220-9
Saura-Calixto F, Goñi I. Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 2006; 94(3): 442-47. http://dx.doi.org/10.1016/j.foodchem.2004.11.033 DOI: https://doi.org/10.1016/j.foodchem.2004.11.033
Saura-Calixto F, Serrano J, Goñi I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem 2007; 101(2): 492-501. http://dx.doi.org/10.1016/j.foodchem.2006.02.006 DOI: https://doi.org/10.1016/j.foodchem.2006.02.006
Rohdman EE. A taxonomic analysis of glucosinolate producing plants, part 1. Phenetics. Syst Bot 1991; 16: 598-18. http://dx.doi.org/10.2307/2418864 DOI: https://doi.org/10.2307/2418864
Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001; 56: 5-51. http://dx.doi.org/10.1016/S0031-9422(00)00316-2 DOI: https://doi.org/10.1016/S0031-9422(00)00316-2
Wright AS. The role of metabolism in chemical mutagenesis and chemical carcinogenesis. Mutation Res 1980; 75: 215-23. http://dx.doi.org/10.1016/0165-1110(80)90017-2 DOI: https://doi.org/10.1016/0165-1110(80)90017-2
Holst B, Williamson G. A critical review of the bioavailability of glucosinolates and related compounds. Nat Product Reports 2004; 21: 425-47. http://dx.doi.org/10.1039/b204039p DOI: https://doi.org/10.1039/b204039p
Zhang Y, Talalay P. Anticarcinogenic activities of organic isothiocyanate: chemistry and mechanisms. Cancer Res 1994; 54: 1976s-81s.
Mithen R, Faulkner K, Magrath R, Rose P, Williamson G, Marquez J. Development of isothiocyanate enriched broccoli and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor Appl Gen 2003; 106: 727-34. DOI: https://doi.org/10.1007/s00122-002-1123-x
Fenewick GR, Heaney RK, Mullin J. Glucosinolates and their break down products in food and food plants. CRC Crit Rev Food Sci Nutr 1983; 18: 123-201. http://dx.doi.org/10.1080/10408398209527361 DOI: https://doi.org/10.1080/10408398209527361
Verkerk R, Knol JJ, Dekker M. The effect of steaming on the glucosinolate content in broccoli. Acta Hort 2010; 867: 37-45. DOI: https://doi.org/10.17660/ActaHortic.2010.867.3
Campbell LD, Slominski BA, Nugon-Baudon L, et al. Studies on intestinal tract glucosinolate content, xenobiotic metabolizing enzymes and thyroid status in germ-free and conventional rats fed rapeseed meal. Proc 9th Int Rapeseed Congr 1995; 1: 212-4. [193] Rosa EAS, Heaney RK, Fenewick GR, Portas CAM. Glucosinolates in crop plants. Hort Rev 1997; 19: 99-215.
Conaway CC, Jiao D, Chung FL. Inhibition of rat liver cytochrome p 450 isozymes by isothiocyanates and their conjugates: a structure activity relationship study. Carcinogenesis 1996; 17: 2423-7. http://dx.doi.org/10.1093/carcin/17.11.2423 DOI: https://doi.org/10.1093/carcin/17.11.2423
Fahey JW, Zhang YS, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protects against chemical carcinogens. Proc Natl Acad Sci USA 1997; 94: 10367-72. http://dx.doi.org/10.1073/pnas.94.19.10367 DOI: https://doi.org/10.1073/pnas.94.19.10367
Smith TK, Lund EK, Parker ML, Clarke RJ, Johnson IT. Allyl isothiocyanate causes mitotic block, loss of cell adhesion and disrupted cytoskeletal structure in HT 29 cells. Carcinogenesis 2004; 25: 1409-15. http://dx.doi.org/10.1093/carcin/bgh149 DOI: https://doi.org/10.1093/carcin/bgh149
Palaniswamy UR, McAvoy RJ, Bible BB, Stuart JD. Ontogenic variations of ascorbic acid and phenethyl isothiocyanate concentrations in watercress (Nasturtium officianale R.Br.) leaves. J Agri Food Chem 2003; 51: 5504-9. http://dx.doi.org/10.1021/jf034268w DOI: https://doi.org/10.1021/jf034268w
Ribnicky DM, Poulev A, Henry E, Raskin J. Seed of Barbarea verna as a rich source of phenethyl isothiocyanate to provide natural protection from environmental and dietary toxins. J Nutrac Funct Med Foods 2001; 3: 43-65. http://dx.doi.org/10.1300/J133v03n03_03 DOI: https://doi.org/10.1300/J133v03n03_03
Morse MA, Zu H, Galati AJ, Schmidt CJ, Stoner GD. Dose related inhibition by dietary phenethyl isothiocyanate of esophageal tumorigenesis and DNA methylation induced by N-nitrosomethylbenzylamine in rats. Cancer Lett 1993; 72: 103-10. http://dx.doi.org/10.1016/0304-3835(93)90018-5 DOI: https://doi.org/10.1016/0304-3835(93)90018-5
Stoner GD, Morse MA. Isothiocyanates as inhibitors of esophageal cancer. Adv Exp Med Biol 1996; 401: 13-23. http://dx.doi.org/10.1007/978-1-4613-0399-2_2 DOI: https://doi.org/10.1007/978-1-4613-0399-2_2
Hecht SS. Chemoprevention of lung cancer by isothiocyanates. Adv Exp Med Biol 1996; 401: 1-11. http://dx.doi.org/10.1007/978-1-4613-0399-2_1 DOI: https://doi.org/10.1007/978-1-4613-0399-2_1
Hwang ES, Jeffery EH. Induction of quinone reductase by sulforaphane N-acetyl cystein conjugate and in murine hepatoma cells. J Med Food 2005; 8: 198-203. http://dx.doi.org/10.1089/jmf.2005.8.198 DOI: https://doi.org/10.1089/jmf.2005.8.198
Khor TO, Hu R, Shen G, et al. Pharmacogenomics of cancer chemo preventive isothiocyanate compound sulforaphane in the intestinal polyps of Apc Min/+ mice. Biopharm Drug Dispos 2005; 27: 407-20. http://dx.doi.org/10.1002/bdd.522 DOI: https://doi.org/10.1002/bdd.522
Hansen M, Bengtsson GB, Borge GI, Berge L, Wold AB. Red cabbage, a vegetable rich in health-related glucosinolates. Acta Hort 2010; 867: 61-5. DOI: https://doi.org/10.17660/ActaHortic.2010.867.6
Fimognari C, Nusse M, Cesari R, Iori R, Cantelli-Forti G, Hrelia P. Growth inhibition, cell cycle arrest and apoptosis in human T-cell leukaemia by the isothiocyanates sulphoraphane. Carcinogenesis 2002; 23: 581-6. http://dx.doi.org/10.1093/carcin/23.4.581 DOI: https://doi.org/10.1093/carcin/23.4.581
Zhang Y, Kensler TW, Cho CG, Posner GH, Talalay P. Anti carcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanate. Proc Natl Acad Sci USA 1994; 91: 3147-50. http://dx.doi.org/10.1073/pnas.91.8.3147 DOI: https://doi.org/10.1073/pnas.91.8.3147
Talalay P, Fahey JW, Holtzclaw WD, Prestera T, Zhang Y. Chemo protection against cancer by phase 2 enzyme induction. Toxicol Lett 1995; 82: 173-9. http://dx.doi.org/10.1016/0378-4274(95)03553-2 DOI: https://doi.org/10.1016/0378-4274(95)03553-2
Talalay P, Zhang Y. Chemoprotection against cancer by isothiocyanate and glucosinolates. Biochem Soc Trans 1996; 24: 806-10. DOI: https://doi.org/10.1042/bst0240806
Thejass P, Kuttan G. Augmentation of natural killer cell and antibody dependent cellular cytotoxicity in BALB/c mice by sulforphane, a naturally occurring isothiocyanate from broccoli 1L-2 and IFN-gamma. Immunnopharmacol Immunnotoxicol 2006; 28: 443-57. http://dx.doi.org/10.1080/08923970600928049 DOI: https://doi.org/10.1080/08923970600928049
Wang LJ, Giovannucci EL, Hunter D, Neuberg D, Su L, Christiani DC. Dietary intake of Cruciferous vegetables glutathione -S- transferase (GST) polymorphisms and lung cancer risk in a Caucasian population. Cancer Causes Control 2004; 15: 977-85. http://dx.doi.org/10.1007/s10552-004-1093-1 DOI: https://doi.org/10.1007/s10552-004-1093-1
Jongen WMF. Glucosinolates in brassica: occurrence and significance as cancer modulating agents. Proc Nutr Soc 1996; 55: 433-46. http://dx.doi.org/10.1079/PNS19960040 DOI: https://doi.org/10.1079/PNS19960040
Yuan F, Chend DZ, Liu K, Sepkovic DW, Bradlow HL, Auborn K. Anti estrogenic activities of indole-3-carbinol in cervical cell: Implication for prevention of cervical cancer. Anticancer Res 1999; 19: 1673-80.
Ashok BT, Chen Y, Liu X, Bradlow HL, Mittelman A, Tiwari RK. Abrogation of estrogen mediated cellular and biochemical effects by indole -3-carbinol. Nutr Cancer 2001; 41: 180-7 DOI: https://doi.org/10.1207/S15327914NC41-1&2_25
Ashok BT, Chen Y, Liu X, et al. Multiple molecular targets of indole-3-carbinol: a chemo preventive anti estrogen in breast cancer. Eur J Cancer Prev 2002; 11: S86-S93.
Aggarwal BB, Ichikawa H. Molecular targets and anti cancer potential of indole-3-carbinol and its derivative. Cell Cycle 2005; 4: 1201-15. http://dx.doi.org/10.4161/cc.4.9.1993 DOI: https://doi.org/10.4161/cc.4.9.1993
Firestone GL, Bjeldanes LF. Indole-3-carbinol and 3’,3’-diindolylmethane anti-proliferative signalling pathways control cell cycle gene transcription in human breast cancer cells by regulating promoter sp-1 transcription factor interactions. J Nutr 2003; 133: 2448S-55S. DOI: https://doi.org/10.1093/jn/133.7.2448S
Wu HT, Lin SH, Chen YH. Inhibition of cell proliferation and in vitro markers of angiogenesis by indole-3-carbinol a major indole metabolite present in Cruciferous vegetables. J Agric Chem 2005; 53: 5164-9. http://dx.doi.org/10.1021/jf050034w DOI: https://doi.org/10.1021/jf050034w
Goodrich RM, Anderson JL, Stoewsand G. Glucosinolate changes in blanched broccoli and Brussels sprouts. J Food Proc Preserv 1989; 13: 275-80. http://dx.doi.org/10.1111/j.1745-4549.1989.tb00106.x DOI: https://doi.org/10.1111/j.1745-4549.1989.tb00106.x
Rosa EAS, Heaney RK. The effect of cooking and processing on the glucosinolate content: studies on four varieties of Portuguese cabbage an hybrid white cabbage. J Sci Food Agric 1993; 62: 259-65. http://dx.doi.org/10.1002/jsfa.2740620309 DOI: https://doi.org/10.1002/jsfa.2740620309
Vallejo F, Tomás-Barberán FA, Garcia-Viguera C. Glucosinolates and vitamin C contente in edible parts of broccoli inflorescences after domestic cooking. Eur Food Res Technol 2002b; 215: 310-6. http://dx.doi.org/10.1007/s00217-002-0560-8 DOI: https://doi.org/10.1007/s00217-002-0560-8
Verkerk R, Dekker M. Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. ‘capitata’ f. rubra DC.) after various microwave treatments. J Sci Food Chem 2004; 52: 7318-23. DOI: https://doi.org/10.1021/jf0493268
Desjardins Y. Onions as a nutraceutical and functional food. Chron Hort 2008; 48(2): 8-14.
Nencini C, Cavallo F, Capasso A, Franchi GG, Giorgio G, Micheli L. Evaluation of antioxidative properties of Allium species growing wild in Italy. Phytother Res 2007; 21(9): 874-8. http://dx.doi.org/10.1002/ptr.2168 DOI: https://doi.org/10.1002/ptr.2168
Verma SK, Verma D. Garlic - "The spice of life": composition, cooking, chemistry and preparations. J Herbal Med Toxicol 2008; 2(2): 21-8.
Kalra N, Arora A, Shukla Y. Involvement of multiple signaling pathways in diallyl sulfide mediated apoptosis in mouse skin tumors. Asian Pacific J Cancer Prev 2006; 7(4): 556-562.
Rose P, Whiterman M, Moore PK, Zhu YZ. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat Prod Rep 2005; 22: 351-68. http://dx.doi.org/10.1039/b417639c DOI: https://doi.org/10.1039/b417639c
Rubec R, Svobodovaand M, Velisek J. Gas chromatographic determination of S-alk(en)yl-L-cysteine sulfoxides. J Chromatogr 1999; 862: 85-94. http://dx.doi.org/10.1016/S0021-9673(99)00902-4
Thomas DJ, Parkin KL. Quantification of alk(en)yl-L-cysteine sulfoxide and related amino acids in alliums by high-performance liquid chromatography. J Agr Food Chem 1994; 42: 1632-8. http://dx.doi.org/10.1021/jf00044a010 DOI: https://doi.org/10.1021/jf00044a010
Block E, Naganathan S, Putnamand D, Zhao SH. Allium chemistry: HPLC-analysis of thiosulfinates from onion, garlic, wild garlic (ramsons), leek, scallion, shallot, elephant (great-headed) garlic, chiveand Chinese chive: uniquely high allyl-to methyl ratios in some garlic samples. J Agr Food Chem 1992a; 40: 21418-30. http://dx.doi.org/10.1021/jf00024a017 DOI: https://doi.org/10.1021/jf00024a017
Breu W. Allium cepa (onion). Part 1: Chemistry and analysis. Phytomedicine 1996; 3: 293-306. http://dx.doi.org/10.1016/S0944-7113(96)80069-9 DOI: https://doi.org/10.1016/S0944-7113(96)80069-9
Calvey EM, Matusik JE, White KD, DeOrazio R, Shaand D, Block E. Allium chemistry: Supercritical fluid Extraction and LD-APCI-MS of thiosulfinatesand related compounds from homogenates of garlic, onion, ramp. Identication in garlic and ramp and synthesis of 1-propanesulfinothionic acid S-allyl ester. J Agr Food Chem 1997; 45: 4406-13. http://dx.doi.org/10.1021/jf970314e DOI: https://doi.org/10.1021/jf970314e
Yin M, Hwang S, Chan K. Nonenzymatic antioxidant activity of four organosulfur compounds derived from garlic. J Agric Food Chem 2002; 50: 6143-7. http://dx.doi.org/10.1021/jf0204203 DOI: https://doi.org/10.1021/jf0204203
Lanzotti V. The analysis of onion and garlic. J Chromatography A 2006; 1112(1-2): 3-22. http://dx.doi.org/10.1016/j.chroma.2005.12.016 DOI: https://doi.org/10.1016/j.chroma.2005.12.016
Weiner L, Shin I, Shimon LJ, et al. Thiol-disulfide organization in alliin lyase (alliinase) from garlic (Allium sativum). Protein Sci 2009; 18(1): 196-205. DOI: https://doi.org/10.1002/pro.10
Kubec R, Svobodovaand M, Velisek J. Distribution of S-alk(en)ylcysteine sulfoxides in some Allium species. Identification of a new flavour precursor: S-Ethylcysteine sulfoxide (ethiin). J Agr Food Chem 2000; 48: 428-33. http://dx.doi.org/10.1021/jf990938f DOI: https://doi.org/10.1021/jf990938f
Kamel A, Saleh M. Recent studies on the chemistry and biological activities of the organosulfur compounds of garlic (Allium sativum). Stud Nat Products Chem 2000; 23: 455-85. http://dx.doi.org/10.1016/S1572-5995(00)80135-0 DOI: https://doi.org/10.1016/S1572-5995(00)80135-0
Amagase H. Clarifying the real bioactive constituents of garlic. J Nutr 2006; 136(3): 716S-25S. DOI: https://doi.org/10.1093/jn/136.3.716S
Munchberg U, Anwar A, Mecklenburg S, Jacob C. Polysulfides as biologically active ingredients of garlic. Org Biomo Chem 2007; 5(10): 1505-18. http://dx.doi.org/10.1039/b703832a DOI: https://doi.org/10.1039/B703832A
Yoo KS, Pike LM. Determination of flavor precursor compound S-alk(en)yl-L-cysteine sulfoxides by HPLC method and their distribution in Allium species. Scientia Hort 1998; 75: 1-10. http://dx.doi.org/10.1016/S0304-4238(98)00107-1 DOI: https://doi.org/10.1016/S0304-4238(98)00107-1
Randle WM, Lancaster JE. Sulphur compounds in Alliums in relation to flavour quality. In: Brewster JL Ed. Onions and other vegetable alliums. CAB International, Wallingford, Oxfordshire, UK 2002; pp. 329-56. DOI: https://doi.org/10.1079/9780851995106.0329
Brewster JL, Ed. Onions and other vegetable alliums. Crop Production Science in Horticulture 15. 2nd ed. CAB International, Wallingford, Oxfordshire, UK; 2008. DOI: https://doi.org/10.1079/9781845933999.0000
Siegers C, Steffen B, Robkeand A, Pentz R. The effect of garlic preparations against tumor cell proliferation. Phytomedicine 1999; 6: 7-11. http://dx.doi.org/10.1016/S0944-7113(99)80028-2 DOI: https://doi.org/10.1016/S0944-7113(99)80028-2
Harris JC, Cottrell SL, Plummer S, Lloyd D. Antimicrobial properties of Allium sativum (garlic). Appl Microb Biotech 2001; 57: 282-6. http://dx.doi.org/10.1007/s002530100722 DOI: https://doi.org/10.1007/s002530100722
Jackson R, McNeil B, Taylor C, Holl G, Ruf D, Gwebu ET. Effect of aged garlic extract in casepase-3 activity in vitro. Nutr Neurosci 2002; 5: 287-90. http://dx.doi.org/10.1080/10284150290032012 DOI: https://doi.org/10.1080/10284150290032012
Davenport DM, Wargovich MJ. Modulation of cytochrome P450 enzymes by organosulfur compounds from garlic. Food Chem Toxicol 2005; 43(12): 1753-62. http://dx.doi.org/10.1016/j.fct.2005.05.018 DOI: https://doi.org/10.1016/j.fct.2005.05.018
Wargovich MJ. Diallylsulfide and allylmethylsulfide are uniquely effective among organosulfur compounds in inhibiting CYP2E1 protein in animal models. J Nutr 2006; 136(3): 832S-4S. DOI: https://doi.org/10.1093/jn/136.3.832S
Knowles LM, Milner JA. Possible mechanisms by which allyl sulphides suppress neoplastic cell proliferation. J Nutr 2001; 131: 1061S-6S. DOI: https://doi.org/10.1093/jn/131.3.1061S
Brady JF, Ishizaki H, Fukuto JM, et al. Inhibition of cytochrome P-450 2E1 by diallyl sulfide and its metabolites. Chem Res Toxicol 1991; 4: 642-7. http://dx.doi.org/10.1021/tx00024a008 DOI: https://doi.org/10.1021/tx00024a008
Kwak MK, Kim SG, Kwak JY, Novakand RF, Kim ND. Inhibition of cytochrome P450 2E1 expression by organosulfur compounds. Biochem Pharmacol 1994; 47: 531-9. http://dx.doi.org/10.1016/0006-2952(94)90185-6 DOI: https://doi.org/10.1016/0006-2952(94)90185-6
Reicks MM, Crankshaw DL. Modulation of rat hepatic cytochrome P450 activity by garlic organosulfur compounds. Nutr Cancer 1996; 25: 241-8. http://dx.doi.org/10.1080/01635589609514448 DOI: https://doi.org/10.1080/01635589609514448
Sundaram SG, Milner JA. Impact of organosulfur compounds in garlic on canine mammary tumor cells in culture. Cancer Lett 1993; 74: 85-90. http://dx.doi.org/10.1016/0304-3835(93)90048-E DOI: https://doi.org/10.1016/0304-3835(93)90048-E
Sakamoto K, Lawsonand LD, Milner JA. Allyl sulfides from garlic suppresses the in vitro proliferation of human A549 lung tumor cells. Nutr Cancer 1997; 29: 152-6. http://dx.doi.org/10.1080/01635589709514617 DOI: https://doi.org/10.1080/01635589709514617
Appel E, Rabinkov A, Neeman M, Kohen F, Mirelman D. Conjugates of daidzein-alliinase as a targeted pro-drug enzyme system against ovarian carcinoma. J Drug Targeting 2011; 19(5): 326-35. http://dx.doi.org/10.3109/1061186X.2010.504265 DOI: https://doi.org/10.3109/1061186X.2010.504265
Liu L, Yeh YY. Inhibition of cholesterol biosynthesis by organosulfur compounds derived from garlic. Lipids 2000; 35: 197-203. http://dx.doi.org/10.1007/BF02664770 DOI: https://doi.org/10.1007/BF02664770
Ide N, Lau BH. Garlic compounds protect vascular endothelial cells from oxidized low-density lipoprotein-induced injury. J Pharm Pharmacol 1997; 49: 908-11. http://dx.doi.org/10.1111/j.2042-7158.1997.tb06134.x DOI: https://doi.org/10.1111/j.2042-7158.1997.tb06134.x
Patrono C. Aspirin: new cardiovascular uses for an old drug. Am J Med 2001; 11: 62S-5S. http://dx.doi.org/10.1016/S0002-9343(00)00645-8 DOI: https://doi.org/10.1016/S0002-9343(00)00645-8
Rahman K. Historical perspective on garlic and cardiovascular disease. J Nutr 2001; 131: 977S-9S. DOI: https://doi.org/10.1093/jn/131.3.977S
Lawson LD, Ransomand DK, Hughes BG. Inhibition of whole blood platelet aggregation by compounds in garlic clove extracts and commercial garlic preparations. Thromb Res 1992; 65: 141-56. http://dx.doi.org/10.1016/0049-3848(92)90234-2 DOI: https://doi.org/10.1016/0049-3848(92)90234-2
Morimitsu Y, Moriokaand Y, Kawakishi S. Inhibitors of platelet aggregation generated from mixtures of Allium species and/or S-alk(en)y-L-cysteine sulfoxides. J Agr Food Chem 1992; 40: 368-72. http://dx.doi.org/10.1021/jf00015a002 DOI: https://doi.org/10.1021/jf00015a002
Ali M, Thomson M, Afzal M. Garlic and onions: their effect on eicosanoid metabolism and its clinical relevance. Prost Leuko Ess Fatty Acids 2000; 62: 55-73. http://dx.doi.org/10.1054/plef.1999.0124 DOI: https://doi.org/10.1054/plef.1999.0124
Hubbard GP, Wolffram S, Lovegrove JA, Gibbins JM. Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study. J Thromb Haem 2006; 2: 2138-45. http://dx.doi.org/10.1111/j.1538-7836.2004.01067.x DOI: https://doi.org/10.1111/j.1538-7836.2004.01067.x
Janssen K, Mensink RP, Cox FJ, et al. Effects of flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr 1998; 67: 255-62. DOI: https://doi.org/10.1093/ajcn/67.2.255
Osmont KS, Arnt CR, Goldman IL. Temporal aspects of onion-induced antiplatelet activity. Plant Food Hum Nutr 2003; 58: 27-40. http://dx.doi.org/10.1023/A:1024062330700 DOI: https://doi.org/10.1023/A:1024062330700
Lau BH, Yamasakiand T, Gridley DS. Garlic compounds modulate macrophage and T-lymphocyte functions. Mol Biother 1991; 3: 103-7.
Feng ZH, Zhangand GM, Hao TL. Effect of dially trisulfide on the activation of T cell and macrophage-mediated cytotoxicity. J Tongji Med Univ 1994; 14: 142-9. http://dx.doi.org/10.1007/BF02886794 DOI: https://doi.org/10.1007/BF02886794
Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. Intake of garlic and its bioactive components. J Nutr 2001; 131(3): 955S-62S. DOI: https://doi.org/10.1093/jn/131.3.955S
Goncagul G, Ayaz E. Antimicrobial effect of garlic (Allium sativum). Recent Patents on Anti-infective Drug Discov 2010; 5(1): 91-3. http://dx.doi.org/10.2174/157489110790112536 DOI: https://doi.org/10.2174/157489110790112536
Sheela CG, Kumud K, Augusti KT. Anti-diabetic effect of onion and garlic sulfoxide amino acids in rats. Planta Med 1995; 61: 356-7. http://dx.doi.org/10.1055/s-2006-958099 DOI: https://doi.org/10.1055/s-2006-958099
Augusti KT, Sheela CG. Antiperoxide effect of S-allyl cysteine sulfoxide, an insulin secretagogue, in diabetic rats. Experientia 1996; 52: 115-20. http://dx.doi.org/10.1007/BF01923354 DOI: https://doi.org/10.1007/BF01923354
Agarwal KC. Therapeutic actions of garlic constituents. Med Res Rev 1996; 16(1): 111-24. http://dx.doi.org/10.1002/(SICI)1098-1128(199601)16:1<111::AID-MED4>3.0.CO;2-5 DOI: https://doi.org/10.1002/(SICI)1098-1128(199601)16:1<111::AID-MED4>3.0.CO;2-5
Wagner H, Dorsch W, Bayer T, Breu W, Willer F. Anti-asthmatic effects of onions: inhibition of 5-lipoxygenase and cyclooxygenase in vitro by thiosulfinates and “cepaenes”. Prost Leuko Ess Faty Acids 1990; 39: 59-62. http://dx.doi.org/10.1016/0952-3278(90)90173-I DOI: https://doi.org/10.1016/0952-3278(90)90173-I
Cao G, Muccitelli HU, Sanchez-Morenoand C, Prior R. Anthocyanins are absorbed in glyated forms in elderly women: a pharmacokinetic study. Am J Clin Nutr 2001; 73: 920-6. DOI: https://doi.org/10.1093/ajcn/73.5.920
Delgado-Vargas F, Paredes-López O, Eds. Natural colorants for food and nutraceutical uses. CRC Press, Boca Raton. FL 2003. DOI: https://doi.org/10.1201/9781420031713
Horbowicz M, Kosson R, Grzesiuk A, Bski HD. Anthocyanins of fruits and vegetables - their occurrence analysis and role in human nutrition. Vegetable Crops Res Bull 2008; 68: 5-22. http://dx.doi.org/10.2478/v10032-008-0001-8 DOI: https://doi.org/10.2478/v10032-008-0001-8
Lila MA. Anthocyanins and human health: an in vitro investigative approach. J Biomed Biotechnol 2004; 5: 306-13. http://dx.doi.org/10.1155/S111072430440401X DOI: https://doi.org/10.1155/S111072430440401X
Rechner AR, Kroner C. Anthocyanins and colonic metabolites of dietary polyphenols inhibit platelet function. Thromb Res 2005; 116: 327-34. http://dx.doi.org/10.1016/j.thromres.2005.01.002 DOI: https://doi.org/10.1016/j.thromres.2005.01.002
Noda Y, Kaneyuki T, Igarashi K, Moriand A, Pacer L. Antioxidant activity of nasunin, an anthocyanin in eggplant. Res Commun Mol Path Pharmacol 1998; 102: 175-87.
Kayamori F, Igarashi K. Effect of dietary nasunin on the serum cholesterol level in rats. Biosci Biotech Biochem 1994; 58: 570-1. http://dx.doi.org/10.1271/bbb.58.570 DOI: https://doi.org/10.1271/bbb.58.570
Hou DX. Potential mechanisms of cancer chemoprevention by anthocyanins. Curr Mol Med 2003; 3: 149-159. http://dx.doi.org/10.2174/1566524033361555 DOI: https://doi.org/10.2174/1566524033361555
Stintzing FC, Stintzing AS, Carle R, Frei B, Wrolstad RE. Color and antioxidant properties of cyanidin-based anthocyanin pigments. J Agric Food Chem 2002; 50: 6172-81. http://dx.doi.org/10.1021/jf0204811 DOI: https://doi.org/10.1021/jf0204811
Crozier A, Lean ME, McDonaldand MS, Black C. Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce and celery. J Agr Food Chem 1997; 45: 590-5. http://dx.doi.org/10.1021/jf960339y DOI: https://doi.org/10.1021/jf960339y
Crozier A, Burns J, Aziz AA, et al. Antioxidant flavonols from fruits, vegetables and beverages: measurements and bioavailability. Biol Res 2000; 33(2): 79-88. http://dx.doi.org/10.4067/S0716-97602000000200007 DOI: https://doi.org/10.4067/S0716-97602000000200007
Eloesser W, Herrmann K. Flavanols and flavones of vegetable. V. Flavanols and flavones of root vegetables. Z Lebensm Unters Forch 1975; 16: 265-70. http://dx.doi.org/10.1007/BF01139578 DOI: https://doi.org/10.1007/BF01139578
DuPont MS, Mondin Z, Williamson G, Price KR. Effect of variety, processing and storage on the flavonoid glycoside content and composition of lettuce and endive. J Agr Food Chem 2000; 48: 3957-64. http://dx.doi.org/10.1021/jf0002387 DOI: https://doi.org/10.1021/jf0002387
Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolinand apigenin) content of edible tropical plants. J Agr Food Chem 2001; 49: 106-12. http://dx.doi.org/10.1021/jf000892m DOI: https://doi.org/10.1021/jf000892m
Negre-Salvayre A, Salvayre R. Quercetin prevents the cytotoxicity of oxidised LDL on lymphoid cell lines. Free Radic Biol Med 1992; 12: 101-6. http://dx.doi.org/10.1016/0891-5849(92)90002-X DOI: https://doi.org/10.1016/0891-5849(92)90002-X
Lio M, Kawaguchi H, Sakota Y, Otonari J, Nitahara H. Effects of polyphenols, including flavonoids, on glutathione S-transferase and glutathione reductase. Biosci Biotech Biochem 1993; 57: 1678-80. http://dx.doi.org/10.1271/bbb.57.1678 DOI: https://doi.org/10.1271/bbb.57.1678
Bohm H, Boeing H, Hempel J, Raab B, Kroke A. Flavonols, flavonesand anthocyanins as natural antioxidants of food and their possible role in the prevention of chronic diseases. Z Ernahrungswiss 1998; 37: 147-63. DOI: https://doi.org/10.1007/PL00007376
Gryglewski RJ, Korbut R, Robak J. On the mechanism of antithrombotic action of flavonoids. J Biochem Pharmacol 1987; 36: 317-21. http://dx.doi.org/10.1016/0006-2952(87)90288-7 DOI: https://doi.org/10.1016/0006-2952(87)90288-7
Cook NC, Samman S. Flavonoids-chemistry, metabolism, cardioprotective effects and dietary sources. J Nutr Biochem 1996; 7: 66-76. http://dx.doi.org/10.1016/0955-2863(95)00168-9 DOI: https://doi.org/10.1016/0955-2863(95)00168-9
Baker ME, Medlock KL, Sheehan DM. Flavonoids inhibit estrogen binding to rat alpha-fetoprotein. Expt Boil Med 1998; 217: 317-21. DOI: https://doi.org/10.3181/00379727-217-44238
Hou EX, Fukuda M, Johnson JA, Miyamori K, Ushikai M, Fujii M. Fisetin induces transcription of NADPH: quinine oxidoreductase gene through an antioxidant responsive element-involved activation. Int J Oncol 2001; 18: 1175-9. DOI: https://doi.org/10.3892/ijo.18.6.1175
Vinson JA, Jang J, Dabbagh YA, Serry MM, Cai S. Plant polyphenols exhibit lipoprotein-bond antioxidant activity using an in vitro oxidation model for heart disease. J Agric Food Chem 1995; 43: 2798-9. http://dx.doi.org/10.1021/jf00059a004 DOI: https://doi.org/10.1021/jf00059a004
Paganga G, Millerand N, Rice-Evans CA. The polyphenolic content of fruit and vegetables and their antioxidant activities: What does a serving constitute?. Free Rad Res 1999; 30: 153-62. http://dx.doi.org/10.1080/10715769900300161 DOI: https://doi.org/10.1080/10715769900300161
Cermak R. Effect of dietary flavonoids on pathways involved in drug metabolism. Expert Opin Drug Metab Toxicol 2008; 4(1): 17-35. http://dx.doi.org/10.1517/17425255.4.1.17 DOI: https://doi.org/10.1517/17425255.4.1.17
de Whalley CV, Rankin SM, Hoult JR, Hessupand W, Leake DS. Flavonoids inhibit the oxidative modification of low-density lipoproteins by macrophage. Biochem Pharmacol 1990; 39: 1743-50. http://dx.doi.org/10.1016/0006-2952(90)90120-A DOI: https://doi.org/10.1016/0006-2952(90)90120-A
Ullmannova V, Popescu NC. Inhibition of cell proliferation, induction of apoptosis, reactivation of DLC1, and modulation of other gene expression by dietary flavone in breast cancer cell lines. Cancer Detect Prev 2007; 31(2): 110-8. http://dx.doi.org/10.1016/j.cdp.2007.02.005 DOI: https://doi.org/10.1016/j.cdp.2007.02.005
Hosny M, Rosazza JP. New isoflavone and triterpene glycosides from soybeans. J Nat Prod 2002; 65: 805-13. http://dx.doi.org/10.1021/np010606g DOI: https://doi.org/10.1021/np010606g
Xu DP, Xiao K, Gu WY, Ding XL. Isolation of a new isoflavone from soybean germ. Zhongcaoyao 2003; 34: 1065-7.
Halbrock K. Flavonoids. In: Conn EE, Ed. Biochemistry of Plant. Academic Press, New York 1981; pp. 425-6.
Liggins J, Bluck JC, Runswick S, Atkinson C, Cowardand WA, Bingham SA. Daidzein and genistein contents of vegetables. Br J Nutr 2000; 84: 717-25. DOI: https://doi.org/10.1017/S0007114500002075
Vacek J, Klejdus B, Lojkova L, Kuban V. Current trends in isolation, separation, determination and identification of isoflavones: a review. J Sep Sci 2008; 31: 2054-67. http://dx.doi.org/10.1002/jssc.200700569 DOI: https://doi.org/10.1002/jssc.200700569
Dentith S, Lockwood B. Development of techniques for the analysis of isoflavones in soy foods and nutraceuticals. Curr Opin Clin Nutr Metab Care 2008; 11: 242-7. http://dx.doi.org/10.1097/MCO.0b013e3282fa15c9 DOI: https://doi.org/10.1097/MCO.0b013e3282fa15c9
Yu O, Jung W, Shi J, et al. Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 2000; 124: 781-94. http://dx.doi.org/10.1104/pp.124.2.781 DOI: https://doi.org/10.1104/pp.124.2.781
Goldwyn S, Lazinskyand A, Wei H. Promotion of health by soy isoflavones: efficacy, benefit and safety concerns. Drug Metabol Drug Interact 2000; 7: 261-89. DOI: https://doi.org/10.1515/DMDI.2000.17.1-4.261
Ren MQ, Kuhn G, Wegner J, Chen J. Isoflavones, substances with multi-biological and clinical properties. Eur J Nutr 2001; 40: 135-46. http://dx.doi.org/10.1007/PL00007388 DOI: https://doi.org/10.1007/PL00007388
Messina M, Kucuk O, Lampe JW. An overview of the health effects of isoflavones with an emphasis on prostate cancer risk and prostate-specific antigen levels. J AOAC Int 2006; 89: 1121-34. DOI: https://doi.org/10.1093/jaoac/89.4.1121
Larkin T, Price WE, Astheimer L. The key importance of soy isoflavone bioavailability to understanding health benefits. Crit Rev Food Sci Nutr 2008; 48: 538-52. http://dx.doi.org/10.1080/10408390701542716 DOI: https://doi.org/10.1080/10408390701542716
Wiseman H. The bioavailability of non-nutrient plant factors: dietary flavonoids and photo-estrogens. Proc Nutr Soc 1999; 58: 139-46. http://dx.doi.org/10.1079/PNS19990019 DOI: https://doi.org/10.1079/PNS19990019
Sarkar FH, Li Y. Isoflavones, soybean phytoestrogens, and cancer. In: Awad AB, Bradford PG, Eds. Nutrition and Cancer Prevention. CRC Press, Boca Raton, FL 2006; pp. 295-312.
Clarkson TB. Soy, soy phytoestrogens and cardiovascular disease. J Nutr 2002; 132: 566S-9S. DOI: https://doi.org/10.1093/jn/132.3.566S
Brynin R. Soy and its isoflavones: a review of their effects on bone density. Altern Med Rev 2002; 7: 317-27.
Messina M, Ho S, Alekel DL. Skeletal benefits of soy isoflavones: a review of the clinical trial and epidemiologic data. Curr Opin Clin Nutr Metab Care 2004; 7: 649-58. http://dx.doi.org/10.1097/00075197-200411000-00010 DOI: https://doi.org/10.1097/00075197-200411000-00010
Orgaard A, Jensen L. The effects of soy isoflavones on obesity. Exp Biol Med 2008; 233: 1066-80. http://dx.doi.org/10.3181/0712-MR-347 DOI: https://doi.org/10.3181/0712-MR-347
Barnes S, Boersma B, Patel R, et al. Isoflavonoids and chronic disease: mechanisms of action. Biofactors 2000; 12: 209-15. http://dx.doi.org/10.1002/biof.5520120133 DOI: https://doi.org/10.1002/biof.5520120133
Messina M. A brief historical overview of the past two decades of soy and isoflavone research. J Nutr 2010; 140: 1350S-4S. http://dx.doi.org/10.3945/jn.109.118315 DOI: https://doi.org/10.3945/jn.109.118315
Barnes S. The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol 2010; 8: 89-98. http://dx.doi.org/10.1089/lrb.2009.0030 DOI: https://doi.org/10.1089/lrb.2009.0030
Lee HP, Gourley L, Duffy SW, Esteve J, Leeand J, Day NE. Dietary effects on breast cancer risk in Singapore. Lancet 1991; 33: 1197-200. http://dx.doi.org/10.1016/0140-6736(91)92867-2 DOI: https://doi.org/10.1016/0140-6736(91)92867-2
Ziegler RG, Hooverand RN, Hildeshein RN. Migration patterns and breast cancer risk in Asian-America women. J Nat Cancer Inst 1993; 85: 1819-27. http://dx.doi.org/10.1093/jnci/85.22.1819 DOI: https://doi.org/10.1093/jnci/85.22.1819
Lamartiniere C. Protection against breast cancer with genistein: a component of soy. Am J Clin Nutr 2000; 71: 1705S-7S. DOI: https://doi.org/10.1093/ajcn/71.6.1705S
Steiner C, Arnould S, Scalbert A, Manach C. Isoflavones and the prevention of breast and prostate cancer: new perspectives opened by nutrigenomics. Br J Nutr 2008; 99(1): 78-108. http://dx.doi.org/10.1017/S0007114508965788 DOI: https://doi.org/10.1017/S0007114508965788
Messina MJ, Wood CE. Soy isoflavones, estrogen therapy, and breast cancer risk: analysis and commentary. Nutr J 2008; 7: 17. http://dx.doi.org/10.1186/1475-2891-7-17 DOI: https://doi.org/10.1186/1475-2891-7-17
Dong JY, Qin LQ. Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat 2011; 125: 315-23. http://dx.doi.org/10.1007/s10549-010-1270-8 DOI: https://doi.org/10.1007/s10549-010-1270-8
Jiang HY, Lv FJ, Tai JQ. Bioactive components of soybean and their function. Soybean Sci 2000; 19: 160-4.
Sarkar FH, Li Y. Soy isoflavones and cancer prevention. Cancer Invest 2003; 21: 744-57. http://dx.doi.org/10.1081/CNV-120023773 DOI: https://doi.org/10.1081/CNV-120023773
Verhoeven DTH, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA. Epidemiological studies on Brassica vegetables and cancer risk. Cancer Epidem Biomarkers Prev 1996; 5: 733-51.
Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG. Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr 2004; 134: 1134-8. DOI: https://doi.org/10.1093/jn/134.5.1134
Brennan P, Hsu CC, Moullan N, et al. Effect of cruciferous vegetables on lung cancer in patients stratified by genetic status: a mendelian randomisation approach. Lancet 2005; 366: 1558-60. http://dx.doi.org/10.1016/S0140-6736(05)67628-3 DOI: https://doi.org/10.1016/S0140-6736(05)67628-3
Kirsh VA, Peters U, Mayne ST, et al. Prospective study of fruit and vegetable intake and risk of prostate cancer. J Natl Cancer Inst 2007; 99: 1200-9. http://dx.doi.org/10.1093/jnci/djm065 DOI: https://doi.org/10.1093/jnci/djm065
Traka M. Broccoli consumption interferes with prostate cancer progression: mechanisms of action. Acta Hort 2010; 867: 19-25. DOI: https://doi.org/10.17660/ActaHortic.2010.867.1
Kohlmeier L, Su L. Cruciferous vegetables consumption and colorectal cancer risk: meta-analysis of the epidemiological evidence. FSEB J 1997; 11: 369.
Seow A, Yuan JM, Sun CL, Van Den Berg D, Lee HP, Yu MC. Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study. Carcinogenesis 2002; 23: 2055-61. http://dx.doi.org/10.1093/carcin/23.12.2055 DOI: https://doi.org/10.1093/carcin/23.12.2055
VanEtten CH, Dzenbichler ME, Williams P, Kwolek WF. Glucosinolates and derived products in cruciferous vegetables. Analysis in the edible part from twenty-two varieties of cabbage. J Agr Food Chem 1976; 24: 452-5. http://dx.doi.org/10.1021/jf60205a049 DOI: https://doi.org/10.1021/jf60205a049
Carlson DG, Daxenbichler ME, Van Etten CH, Tookey HL, Williams PH. Glucosinolates in crucifer vegetables: turnip and rutabagas. J Agr Food Chem 1981; 29: 1235-9. http://dx.doi.org/10.1021/jf00108a034 DOI: https://doi.org/10.1021/jf00108a034
Carlson DG, Daxenbichler ME, VanEtten CH, Hill CB, Williams PH. Glucosinolates in radish cultivars. J Am Soc Hort Sci 1985; 110: 634-8. DOI: https://doi.org/10.21273/JASHS.110.5.634
Carlson DG, Daxenbichler ME, VanEtten CH, Kwolek WF, Williams PH. Glucosinolates in crucifer vegetables: broccoli, Brussels sprouts, cauliflower, collards, kale, mustard green, and kohlrabi . J Am Soc Hort Sci 1987a; 112: 173-8. DOI: https://doi.org/10.21273/JASHS.112.1.173
Carlson DG, Daxenbichler ME, VanEtten CH, Kwolek WF, Hill CB, Williams PH. Glucosinolates in turnip tops and roots: cultivars grown for greens and/or roots. J Am Soc Hort Sci 1987b; 112: 179-83. DOI: https://doi.org/10.21273/JASHS.112.1.179
Kushad MK, Brown AF, Kurillicn AC, et al. Variation in glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 1999; 47: 1541-8. http://dx.doi.org/10.1021/jf980985s DOI: https://doi.org/10.1021/jf980985s
Ciska E, Martyniak-Przybyszewska B, Kozlowska H. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic condition. J Agr Food Chem 2000; 48: 2862-7. http://dx.doi.org/10.1021/jf981373a DOI: https://doi.org/10.1021/jf981373a
Vallejo F, Tomas-Barberan FA, Garcia-Viguera C. Potential bioactive compounds in health promotion from broccoli cultivars grown in Spain. J Sci Food Agric 2002; 82: 1293-7. http://dx.doi.org/10.1002/jsfa.1183 DOI: https://doi.org/10.1002/jsfa.1183
Vallejo F, Tomas-Barberan FA, Banavent-Garcia AG, Garcia-Viguera C. Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilization conditions. J Sci Food Agric 2003; 83: 307-13. http://dx.doi.org/10.1002/jsfa.1320 DOI: https://doi.org/10.1002/jsfa.1320
Nilsson J, Olsson K, Engqvist G, et al. Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohydrates in Brassica vegetables. J Sci Food Agric 2006; 86: 528-38. http://dx.doi.org/10.1002/jsfa.2355 DOI: https://doi.org/10.1002/jsfa.2355
Borkowski J, Szajdek A, Borkowska EJ, Ciska E, Zielinski H. Content of selected bioactive components and anti oxidant properties of broccoli (Brassica oleracea L.). Eur Food Res Tech 2008; 226: 459-65. http://dx.doi.org/10.1007/s00217-006-0557-9 DOI: https://doi.org/10.1007/s00217-006-0557-9
Cartea ME, Velasco P, Obregón S, Padilla G, de Haro A. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 2008; 69: 403-10. http://dx.doi.org/10.1016/j.phytochem.2007.08.014 DOI: https://doi.org/10.1016/j.phytochem.2007.08.014
Kusznierewics B, Bartoszek A, Wolska L, Drzewiwcki J, Gorinstein S, Namiesnik J. Partial characterization of white cabbages (Brassica oleracea var. capitata f. alba) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins. LWT 2008; 41: 1-9. http://dx.doi.org/10.1016/j.lwt.2007.02.007 DOI: https://doi.org/10.1016/j.lwt.2007.02.007
Cao G, Sofic E, Prior RL. Antioxidant capacity of tea and common vegetables. J Agr Food Chem 1996; 44: 3426-31. http://dx.doi.org/10.1021/jf9602535 DOI: https://doi.org/10.1021/jf9602535
Kurilich A, Tsau GJ, Brown A, et al. Carotene, tocopherol and ascorbate contents in sub-species of Brassica oleracea. J Agr Food Chem 1999; 47: 1576-81. http://dx.doi.org/10.1021/jf9810158 DOI: https://doi.org/10.1021/jf9810158
Konings EJM, Roomans HH, Dorant E, Goldbohm RA, Saris WH, van den Brandt PA. Folate intake of the Dutch population according to newly established liquid chromatography data for foods. Am J Clin Nutr 2001; 73(4): 765-76. DOI: https://doi.org/10.1093/ajcn/73.4.765
Fermenia A, Selvendran RR, Ring SG, Robertson JA. Effects of heat treatment and dehydration on properties of cauliflower fiber. J Agr Food Chem 1999; 47: 728-32. http://dx.doi.org/10.1021/jf980462k DOI: https://doi.org/10.1021/jf980462k
Rahn CR, Bending GD, Lillywhite RD, Turner MK. Chemical characterisation of vegetable and arable crops residue materials: a comparison of methods. J Sci Food Agr 1999; 79: 1715-21. http://dx.doi.org/10.1002/(SICI)1097-0010(199909)79:12<1715::AID-JSFA426>3.0.CO;2-V DOI: https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1715::AID-JSFA426>3.0.CO;2-V
Kubec R, Svobodova M, Velisek J. Gas-chromatographic determination of S-alk(eny)lylcysteine sulfoxide. J Chromatogr 1999; 862: 85-94. http://dx.doi.org/10.1016/S0021-9673(99)00902-4 DOI: https://doi.org/10.1016/S0021-9673(99)00902-4
Hertog MG, Hollman PC, Katan MB. Content of potentially anticarcinogenic flavonoids of 28 vegetables and fruits commonly consumed in The Netherlands. J Agr Food Chem 1992; 40: 2379-83. http://dx.doi.org/10.1021/jf00024a011 DOI: https://doi.org/10.1021/jf00024a011
Herrmann K. Flavonols and flavones in food plants: a review. J Food Technol 1976; 11: 433-48. http://dx.doi.org/10.1111/j.1365-2621.1976.tb00743.x DOI: https://doi.org/10.1111/j.1365-2621.1976.tb00743.x
Bilyk A, Sapers GM. Distribution of quercetin and kaemperol in lettuce, kale, chive, garlic chive leek, horseradish, red radish and red cabbage tissue. J Agr Food Chem 1985; 33: 226-8. http://dx.doi.org/10.1021/jf00062a017 DOI: https://doi.org/10.1021/jf00062a017
Ip C, Lisk DJ. Enrichment of selenium in allium vegetables for cancer prevention. Carcinogenesis 1994; 15: 1881-5. http://dx.doi.org/10.1093/carcin/15.9.1881 DOI: https://doi.org/10.1093/carcin/15.9.1881
Wang H, Kruszewki A, Brautigan DL. Cellular chromium activation of insulin receptor kinase. Biochemistry 2005; 44: 8167-75. http://dx.doi.org/10.1021/bi0473152 DOI: https://doi.org/10.1021/bi0473152
Ritsema T, Smeekens S. Fructans: beneficial for plants and humans. Curr Opin Plant Biol 2003; 6: 223-30. http://dx.doi.org/10.1016/S1369-5266(03)00034-7 DOI: https://doi.org/10.1016/S1369-5266(03)00034-7
Kruse HP, Kleessen B, Blaut M. Effects of inulin on faecal bifidobacteria in human subjects. Br J Nutr 1999; 82: 375-82. DOI: https://doi.org/10.1017/S0007114599001622
Kilian S, Kritzinger S, Rycroft C, Gibson GR, du Preez J. The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota. World J Microb Biotech 2002; 18: 637-44. http://dx.doi.org/10.1023/A:1016808015630 DOI: https://doi.org/10.1023/A:1016808015630
Scholz-Ahrens KE, Schaafsma G, van den Heuvel EGHM, Schrezenmeir J. Effects of prebiotics on mineral metabolism. Am J Clin Nutr 2001; 73: 459S-64S. DOI: https://doi.org/10.1093/ajcn/73.2.459s
Jackson KG, Taylor GR, Clohessy AM, Willieams CM. The effect of the daily intake of inulin on fasting lipid, insulin and glucose concentrations in middle-aged men and women. Br J Nutr 1999; 82: 23-30. DOI: https://doi.org/10.1017/S0007114599001087
Srinivasan K. Plant foods in the management of diabetes mellitus: Spices as beneficial antidiabetic food adjuncts. Int J Food Sci Nutr 2005; 56: 399-414. http://dx.doi.org/10.1080/09637480500512872 DOI: https://doi.org/10.1080/09637480500512872
Clinton S. Lycopene: Chemistry, biology and implication for human health and disease. Nutr Rev 1998; 56: 35-51. http://dx.doi.org/10.1111/j.1753-4887.1998.tb01691.x DOI: https://doi.org/10.1111/j.1753-4887.1998.tb01691.x
Scott KJ, Hart DJ. Development and evolution of an HPLC method for the analysis of carotenoids food and the measurement of the carotenoid content vegetables and fruits commonly consumed in the UK. Food Chem 1995; 54: 101-11. http://dx.doi.org/10.1016/0308-8146(95)92669-B DOI: https://doi.org/10.1016/0308-8146(95)92669-B
Tonucci LH, Holden JM, Beecher GR, Khachik F, Davis CS, Mulokozi G. Carotenoid content of thermally processed tomato-based food products. J Agri Food Chem 1995; 43: 579-86. http://dx.doi.org/10.1021/jf00051a005 DOI: https://doi.org/10.1021/jf00051a005
Gerster H. The potential role of lycopene for human health. J Am Coll Nutr 1997; 16: 109-26. DOI: https://doi.org/10.1080/07315724.1997.10718661
Albushita AA, Daood HG, Biacs PA. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J Agr Food Chem 2000; 48: 2075-81. http://dx.doi.org/10.1021/jf990715p DOI: https://doi.org/10.1021/jf990715p
Leonardi C, Ambrosino P, Esposito F, Fogliano V. Antioxidant activity and caroteoid and tomatine contentes in different typologies of fresh consumption tomatoes. J Agr Food Chem 2000; 48: 4723-7. http://dx.doi.org/10.1021/jf000225t DOI: https://doi.org/10.1021/jf000225t
Arab L, Steck S. Lycopene and cardiovascular disease. Am J Clin Nutr 2000; 71: 1691S-5S. DOI: https://doi.org/10.1093/ajcn/71.6.1691S
Giovannucci E. Tomatoes, tomato based products, lycopene and cancer: review of the epidemiological literature. J Natl Cancer Institute 1999; 91: 317-31. http://dx.doi.org/10.1093/jnci/91.4.317 DOI: https://doi.org/10.1093/jnci/91.4.317
Dietary Guidelines Advisory Committee. Report of the Dietary Guidelines Advisory Committee. Washington, DC; 2005. Available from: http: //www.health.gov/dietaryguidelines/dga2005/report/HTML/C_ Methodology.htm.
Rao AV, Rao LG. Carotenoids and human health. Pharmacol Res 2007; 55(3): 207-16. http://dx.doi.org/10.1016/j.phrs.2007.01.012 DOI: https://doi.org/10.1016/j.phrs.2007.01.012
Albushita AA, Hebshi EA, Daood HG, Biacs PA. Determination of antioxidant vitamins in tomato. Food Chem 1997; 60: 207-12. http://dx.doi.org/10.1016/S0308-8146(96)00321-4 DOI: https://doi.org/10.1016/S0308-8146(96)00321-4
Stewart AJ, Bozonnet S, Mullen W, Jenkins GI, Lean ME, Crozier A. Occurrence of flavonols in tomatoes and tomato-based products. J Agr Food Chem 2000; 48: 2663-9. http://dx.doi.org/10.1021/jf000070p DOI: https://doi.org/10.1021/jf000070p
McCay CM, McCay JB, Smith O. The nutritive value of potato. In: Talburt WF, Smith O, Eds. Potato processing. AVI, Westport, CT 1987; pp. 287-331.
Okeyo J, Kushad M. Composition of four potato cultivars in relation to cold storage and reconditioning. Hort Technol 1995; 5: 250-3. DOI: https://doi.org/10.21273/HORTTECH.5.3.250
Friedman M. The nutritional value of proteins from different food sources: a review. J Agr Food Chem 1996; 44: 6-29. http://dx.doi.org/10.1021/jf9400167 DOI: https://doi.org/10.1021/jf9400167
Friedman M. Chemistry, biochemistry and dietary role of potato polyphenols: a review. J Agr Food Chem 1997; 45: 1523-40. http://dx.doi.org/10.1021/jf960900s DOI: https://doi.org/10.1021/jf960900s
Jung CS, Griffiths HM, De Jong DM, Cheng S, Bodis M, De Jong WS. The potato P locus codes for flavonoid 3',5'-hydroxylase. Theor Apl Genet 2005; 110(2): 269-75. http://dx.doi.org/10.1007/s00122-004-1829-z DOI: https://doi.org/10.1007/s00122-004-1829-z
Reeve RM, Hautala E, Weaver ML. Anatomy and compositional variation within potatoes II. Phenolics, enzymes and other minor components. Am Potato J 1969; 46: 374-86. http://dx.doi.org/10.1007/BF02869558 DOI: https://doi.org/10.1007/BF02869558
Thomas P, Joshi MR. Prevention of after-cooking darkening of irradiated potatoes. Potato Res 1977; 20: 77-84. http://dx.doi.org/10.1007/BF02362302 DOI: https://doi.org/10.1007/BF02362302
Al-Saikhan MS, Howard LR, Miller JC. Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum L.). J Food Sci 1995; 60: 341-4. http://dx.doi.org/10.1111/j.1365-2621.1995.tb05668.x DOI: https://doi.org/10.1111/j.1365-2621.1995.tb05668.x
Hasegawa D, Johnson RM, Gould WA. Effect of cold storage on chlorogenic acid content of potatoes. J Agr Food Chem 1966; 14: 165-9. http://dx.doi.org/10.1021/jf60144a020 DOI: https://doi.org/10.1021/jf60144a020
Cieslik E. The effect of naturally occurring vitamin C in potato tubers on the levels of nitrates and nitriles. Food Chem 1994; 49: 233-5. http://dx.doi.org/10.1016/0308-8146(94)90165-1 DOI: https://doi.org/10.1016/0308-8146(94)90165-1
Hagg M, Hakkinen R, Kumpulainen J, Ahvenainen R, Hurme E. Effect of preparation procedures, packaging and storage on nutrient retention of peeled potato. J Sci Food Agr 1998; 77: 519-26. http://dx.doi.org/10.1002/(SICI)1097-0010(199808)77:4<519::AID-JSFA75>3.0.CO;2-C DOI: https://doi.org/10.1002/(SICI)1097-0010(199808)77:4<519::AID-JSFA75>3.0.CO;2-C
Ong AS, Tee ES. Natural sources of carotenoids from plants and oils. Meth Enzymol 1992; 213: 142-67. http://dx.doi.org/10.1016/0076-6879(92)13118-H DOI: https://doi.org/10.1016/0076-6879(92)13118-H
Packer L. Vitamin E is natures’ master antioxidant. Sci Med 1994; 11: 54-63.
Lachman J, Hamouz JK, Orsak M, Pivec V. Potato tubers as a significant source of antioxidants in human nutrition. Rostl Vyroba 2000; 46: 231-6.
Djujic I, Djujic B, Trajkovic L. Dietary intake of selenium in Serbia: results for 1991. Conf Selenium Nauc Skup Srp Akad Nauk Umet 1995; 6: 81-7.
Bosland PW. Capsicums: Innovative uses of an ancient crop. In: Janick J, Ed. Progress in new crops. ASHS Press, Arlington, VA 1996; pp. 479-87.
Howard LR, Talcott ST, Brenes CH, Villalon B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J Agr Food Chem 2000; 48: 1713-20. http://dx.doi.org/10.1021/jf990916t DOI: https://doi.org/10.1021/jf990916t
Howard LR, Smith RT, Wagner AB, Villalon B, Burns EE. Provitamin A and ascorbic acid content of fresh pepper cultivars (Capsicum annum) and processed jalapenos. J Food Sci 1994; 59: 362-5. http://dx.doi.org/10.1111/j.1365-2621.1994.tb06967.x DOI: https://doi.org/10.1111/j.1365-2621.1994.tb06967.x
Lee Y, Howard R, Villalon B. Flavonoids and antioxidant activity of fresh pepper (Capsicum annum) cultivars. J Food Sci 1995; 60: 473-6. http://dx.doi.org/10.1111/j.1365-2621.1995.tb09806.x DOI: https://doi.org/10.1111/j.1365-2621.1995.tb09806.x
Szallasi A, Blumberg PM. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 1999; 51: 159-11.
Noda Y, Kneyuki T, Igarashi K. Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology 2000; 148(2-3): 119-23. http://dx.doi.org/10.1016/S0300-483X(00)00202-X DOI: https://doi.org/10.1016/S0300-483X(00)00202-X
Matsuzoe N, Yamaguchi M, Kawanobu S, Watanabe Y, Higashi H, Sakata Y. Effect of dark treatment of the eggplant on fruit skin color and its anthocyanin components. J Japan Soc Hort Sci 1999; 68: 138-45. http://dx.doi.org/10.2503/jjshs.68.138 DOI: https://doi.org/10.2503/jjshs.68.138
Ben-Amos A, Fishler R. Analysis of carotenoids with emphasis on 9-cis β-carotene in vegetables and fruits commonly consumed in Israel. Food Chem 1998; 62: 515-20. http://dx.doi.org/10.1016/S0308-8146(97)00196-9 DOI: https://doi.org/10.1016/S0308-8146(97)00196-9
Ensminger AH, Esminger ME, Kondale JE, Robson JRK. Food for Health: A Nutrition Encyclopedia. Pegus Press, Clovis, California 1986.
Wood R. The Whole Foods Encyclopedia. Prentice-Hall Press; New York, NY 1988.
Dhillon NPS, Monforte AJ, Pitrat M, et al. Melon landraces od India: contributions and importance. Plant Breed Rev 2012; 35: 85-150. DOI: https://doi.org/10.1002/9781118100509.ch3
Burger Y, Yeselson Y, Saar U, et al. Screening of melon (Cucumis melo) germplasm for consistently high sucrose content and for high ascorbic acid content. In: Lebeda A, Paris HS, Eds. Progress in Cucurbit genetics and breeding research. Proc. Cucurbitaceae 2004. Palacky University, Olomouc, Czech Republic 2004; pp.151-5.
Crosby KM, Lester GE, Leskovar DI. Genetic variation for beneficial phytochemical levels in melons (Cucumis melo). In: Holmes GJ, Ed. Cucurbitaceae 2006. Universal Press, Raleigh, NC 2006; pp. 70-6.
Mallillin AC, Trinidad TP, Raterta R, Dagbay K, Loyola AS. Dietary fibre and fermentability characteristics of root crops and legumes. Br J Nutr 2008; 100(3): 485-8. http://dx.doi.org/10.1017/S000711450891151X DOI: https://doi.org/10.1017/S000711450891151X
Trinidad TP, Mallillin AC, Loyola AS, Sagum RS, Encabo RR. The potential health benefits of legumes as a good source of dietary fibre. Br J Nutr 2010; 103(4): 569-74. http://dx.doi.org/10.1017/S0007114509992157 DOI: https://doi.org/10.1017/S0007114509992157
Dias JS. World importance, marketing and trading of vegetables. Acta Horticulturae 2011; 921: 153-69. DOI: https://doi.org/10.17660/ActaHortic.2011.921.18
Almeida D. Manual de Culturas Hortícolas. Editorial Presença, Lisboa 2006; Vol. 1.
Nielsen SE, Young JF, Daneshvar B, et al. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr 1999; 81: 447-55. DOI: https://doi.org/10.1017/S000711459900080X
Ching LS, Mohamed S. Alpha-tocopherol content of 62 edible tropical plants. J Agr Food Chem 2001; 49: 3101-5. http://dx.doi.org/10.1021/jf000891u DOI: https://doi.org/10.1021/jf000891u
Simon PW, Goldman IL. Carrot. In: Sing RJ, Ed. Genetic Resources, Chromosome Engineering, and Crop Improvement. CRC Press, Boca Raton, FL, USA 2007; pp. 497-516. DOI: https://doi.org/10.1201/9781420009569.ch11
He T, Huang CY, Chen H, Hou YH. Effects of spinach powder fat-soluble extract on proliferation of human gastric adenocarcinoma cell. Biomed Environ Sci 1999; 12: 247-52.
Prakash D, Nath P, Pal M. Composition, variation of nutritional contents in leaves, seed protein, fat and fatty acid profile of chenopodium species. J Sci Food Agric 1993; 62(2): 203-5. http://dx.doi.org/10.1002/jsfa.2740620214 DOI: https://doi.org/10.1002/jsfa.2740620214
Sienera R. Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chem 2006; 98(2): 220-4. http://dx.doi.org/10.1016/j.foodchem.2005.05.059 DOI: https://doi.org/10.1016/j.foodchem.2005.05.059
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .