The Solid State 13C NMR Study of Gamma Radiation of Ethylene-Octene Copolymer

Authors

  • Shaojin Jia Department of Chemical Engineering and Science, College of Environment and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, P. R. China
  • Zhenqi Zhang Department of Chemical Engineering and Science, College of Environment and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, P. R. China
  • Xiaotian Hou Department of Chemical Engineering and Science, College of Environment and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, P. R. China
  • Tao He Shanghai key lab of Electric Insulation and Thermal Aging, Department of Polymer Engineering and Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, P. R. China
  • Pingkai Jiang Shanghai key lab of Electric Insulation and Thermal Aging, Department of Polymer Engineering and Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, P. R. China

DOI:

https://doi.org/10.6000/1929-5995.2014.03.02.6

Keywords:

Ethylene-octene copolymer (POE), γ-radiation, solid-state 13C NMR, Chain Scission.

Abstract

Ethylene-octene copolymer (POE) samples exposed to γ-radiation under a series of absorbed doses have been investigated using thermal analysis, sol–gel analysis and solid state 13C nuclear magnetic Resonance (NMR). The chemical shift of POE was assigned and peak evolution as a function of radiation dose was discussed. An obviously evolution is that the peak area of 33.6 ppm decreases as a function of the increase of radiation dose, and at the same time, the peak shape broadens gradually. This indicates that the chain scission occurred between α-C and branch chain C (methine) or between C1 (the sidegroup hexyl) and branch chain C (methane) after radiation. The chain scission is severer with the increase of absorbed dose.The 13C NMR spectra of the corresponding gels confirmed the result. The variation in linewidth of the resonance at 33.6 ppm in samples of POE irradiated to different doses was attributed to information of chain, scission, new cross linking, and crystalline components.

References

Bensason S, Nazarenko S, Chum S, Hiltner A, Baer E. Elastomeric blends of homogeneous ethylene-octene copolymers. Polymer 1997; 38: 3913-19. http://dx.doi.org/10.1016/S0032-3861(96)00963-9 DOI: https://doi.org/10.1016/S0032-3861(96)00963-9

Roberto SB, Erin AM, Martinez-Pardo ME, Daniel LZ. Effect of gamma irradiation on ethylene-octene copolymers produced by constrained geometry catalyst. Nucl Instrum Methods Phys Res Sect B 1991; 151: 174-80. http://dx.doi.org/10.1016/S0168-583X(99)00143-3 DOI: https://doi.org/10.1016/S0168-583X(99)00143-3

Hill DJT, Preston CML, Whittaker AK. NMR study of the gamma radiolysis of poly(dimethyl siloxane) under vacuum at 303K. Polymer 2002; 43: 1051-59. http://dx.doi.org/10.1016/S0032-3861(01)00711-X DOI: https://doi.org/10.1016/S0032-3861(01)00711-X

Adolphe C. XIIth international meeting on radiation processing Avignon 25-30 March 2001 (Polymer irradiation: past-present and future). Radiat Phys Chem 2002; 63: 207-209. http://dx.doi.org/10.1016/S0969-806X(01)00621-1 DOI: https://doi.org/10.1016/S0969-806X(01)00621-1

Reinholds I, Kalkis V, Zicans J, Meri RM, Bockovs I, Grigalovica A, Muizzemnieks G. Mechanical and thermomechanical properties of radiation modified poly(ethylene-octene)/Ni-Zn ferrite nanocomposites. IOP Conference Series: Materials Science and Engineering. IOP Publishing 2013; 49(1): 012048. http://dx.doi.org/10.1088/1757-899X/49/1/012048 DOI: https://doi.org/10.1088/1757-899X/49/1/012048

Hui S, Mushtaq S, Chaki TK, Chattopadhyay S. Effect of Controlled Electron Beam Irradiation on the Rheological Properties of Nanosilica-Filled LDPE-EVA Based Thermoplastic Elastomer. J Appl Polym Sci 2011; 119: 2153-66. http://dx.doi.org/10.1002/app.32941 DOI: https://doi.org/10.1002/app.32941

Poongavalappil S, Svoboda P, Theravalappil R, Svobodova D, Danek M, Zatloukal M. Study on the influence of electron beam irradiation on the thermal, mechanical and rheological properties of ethylene-octene copolymer with high comonomer content. J Appl Polym Sci 2013; 128: 3026-33. http://dx.doi.org/10.1002/app.38479 DOI: https://doi.org/10.1002/app.38479

Li JQ, Peng J, Qiao JL, Jin DB, Wei GS. Effect of gamma irradiation on ethylene–octene copolymers. Radiat Phys Chem 2002; 63: 501-504. http://dx.doi.org/10.1016/S0969-806X(01)00633-8 DOI: https://doi.org/10.1016/S0969-806X(01)00633-8

Singla S, Beckham HW. Miscible Blends of Cyclic Poly(oxyethylene) in Linear Polystyrene. Macromolecules 2008; 41: 9784-92. http://dx.doi.org/10.1021/ma800327c DOI: https://doi.org/10.1021/ma800327c

Roger AA, Mathew C, Kenneth TG, Roger L. Clough, Todd MA. Morphology changes during radiation-thermal degradation of polyethylene and an EPDM copolymer by 13C NMR spectroscopy. Polym Degrad Stab 2001; 73: 355-62. http://dx.doi.org/10.1016/S0141-3910(01)00097-0 DOI: https://doi.org/10.1016/S0141-3910(01)00097-0

Palmas P, Colsenet R, Lemarie L, Sebban M. Ageing of EPDM elastomers exposed to γ-radiation studied by 1H broadband and 13C high-resolution solid-state NMR. Polymer 2003; 44: 4889-97. http://dx.doi.org/10.1016/S0032-3861(03)00476-2 DOI: https://doi.org/10.1016/S0032-3861(03)00476-2

David MG, Edward GP. Carbon-13 Magnetic Resonance II Chemical Shift Data for Alkanes. J Am Chem Soc 1964; 86: 2984-90. http://dx.doi.org/10.1021/ja01069a004 DOI: https://doi.org/10.1021/ja01069a004

Perera MCS, Rowen CC. Radiation degradation of MG rubber studied by dynamic mechanical analysis and solid state NMR. Polymer 2000; 41: 323-34. http://dx.doi.org/10.1016/S0032-3861(99)00087-7 DOI: https://doi.org/10.1016/S0032-3861(99)00087-7

Masaru M, Bin YZ, Xu CY, Ma L, Takahiko N, Takenori S. Relaxation mechanism in several kinds of polyethylene estimated by dynamic mechanical measurements, positron annihilation, X-ray and 13C solid-state NMR. Polymer 2003; 44: 4325-40. http://dx.doi.org/10.1016/S0032-3861(03)00352-5 DOI: https://doi.org/10.1016/S0032-3861(03)00352-5

Bik J, Głuszewski W, Rzymski WM, Zagorski ZP. EB radiation crosslinking of elastomers. Radiat Phys Chem 2003; 67: 421-23. http://dx.doi.org/10.1016/S0969-806X(03)00078-1 DOI: https://doi.org/10.1016/S0969-806X(03)00078-1

Pooter MD, Smith PB, Dohrer KK, et al. Determination of the composition of common linear low density polyethylene copolymers by 13C-NMR spectroscopy. J Appl Polym Sci 1991; 42: 399-408. http://dx.doi.org/10.1002/app.1991.070420212 DOI: https://doi.org/10.1002/app.1991.070420212

Charlesby A, Pinner SH. Analysis of the Solubility Behaviour of Irradiated Polyethylene and Other Polymers. Proc Roy Soc 1959; 249: 367-72. http://dx.doi.org/10.1098/rspa.1959.0030 DOI: https://doi.org/10.1098/rspa.1959.0030

Downloads

Published

2014-06-24

How to Cite

Jia, S., Zhang, Z., Hou, X., He, T., & Jiang, P. (2014). The Solid State 13C NMR Study of Gamma Radiation of Ethylene-Octene Copolymer. Journal of Research Updates in Polymer Science, 3(2), 114–121. https://doi.org/10.6000/1929-5995.2014.03.02.6

Issue

Section

Articles