Titanium Complex Containing a Saligenin Ligand - New Universal Post-Metallocene Polymerization Catalyst: Copolymerization of Ethylene with Higher α-Olefins

Authors

  • Laura A. Rishina Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin St., Moscow, 119991, Russia
  • Svetlana S. Lalayan Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin St., Moscow, 119991, Russia
  • Svetlana Ch. Gagieva Moscow State University, Department of Chemistry, Leninskie Gory, Moscow, 119992, Russia
  • Vladislav А. Тuskaev Moscow State University, Department of Chemistry, Leninskie Gory, Moscow, 119992, Russia
  • Alexander N. Shchegolikhin Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin St., Moscow, 119991, Russia
  • Dimitri P. Shashkin Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin St., Moscow, 119991, Russia
  • Yury V. Kissin Rutgers, The State University of New Jersey, Department of Chemistry and Chemical Biology, 610 Taylor Rd., Piscataway, NJ 08854, USA

DOI:

https://doi.org/10.6000/1929-5995.2014.03.04.3

Keywords:

Post-metallocene catalysts, molecular weight distribution, compositional distribution, differential scanning calorimetry, nuclear magnetic resonance.

Abstract

Copolymerization reactions of ethylene with three α-olefins, 1-hexene, 1-octene and 1-decene, were carried out with a new post-metallocene catalyst based on Ti complex with a bidentate saligenin-type ligand I and two co catalysts, MAO and a combination of AlEt2Cl and MgBu2. Ability of the I - AlEt2Cl - MgBu2 system to copolymerize α-olefins with ethylene is far superior to that of the I - MAO system. Reactivity of α-olefins in copolymerization reactions with ethylene decreases in the sequence: 1-hexene>1-octene>1-decene. Both catalyst systems, I - MAO and I - AlEt2Cl - MgBu2, contain several populations of active centers that greatly differs both in the average molecular weights and in composition of the copolymer molecules they produce. Active centers in both catalytic systems show significant tendency to alternate monomer units in copolymer chains.

References

Krentsel BA, Kissin YV, Kleiner VI, Stotskaya SS. Polymers and Copolymers of Higher α-Olefins. New York: Hanser Publishers; 1997 [chapter 8].

Peacock AJ. Handbook of Polyethylene: Structures, Properties, and Applications. New York: Marcel Dekker 2000; p. 123. DOI: https://doi.org/10.1201/9781482295467

(a) Oakes DCH, Gibson VC, White AJP, Williams DJ. Highly active titanium-based olefin polymerization catalysts supported by bidentate phenoxyamide ligands. Inorg Chem 2006; 45: 3476-7. http://dx.doi.org/10.1021/ic060146k DOI: https://doi.org/10.1021/ic060146k

(b) Gao ML, Gu YF, Wang C, et al. Ethylene homopolymerization and copolymerization with α-olefins catalyzed by titanium complexes bearing [O−NSR] tridentate ligands. J Mol Catal A: Chem 2008; 292: 62-6. http://dx.doi.org/10.1016/j.molcata.2008.06.006 DOI: https://doi.org/10.1016/j.molcata.2008.06.006

(c) Ma L, Wang H, Yi J, Huang Q, Gao K, Yang W. Copolymerization of ethylene with 1-hexene promoted by novel multi-chelated non-metallocene complexes with imine bridged imidazole ligand. J Polym Sci: Polym Chem 2010; 48(Pt A): 417-24. DOI: https://doi.org/10.1002/pola.23800

Chum PS, Swogger KW. Olefin polymer technologies—History and recent progress at The Dow Chemical Company. Prog Polym Sci 2008; 33: 797-819. http://dx.doi.org/10.1016/j.progpolymsci.2008.05.003 DOI: https://doi.org/10.1016/j.progpolymsci.2008.05.003

Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL, Wenzel TT. Catalytic production of olefin block copolymers via chain shuttling polymerization. Science 2006; 312: 714-8. http://dx.doi.org/10.1126/science.1125268 DOI: https://doi.org/10.1126/science.1125268

(a) Park S, Han Y, Kim SK, Lee J, Kim HK, Do Y. Non-Cp type homogeneous catalytic systems for olefin polymerization. J Organomet Chem 2004; 689: 4263-76. DOI: https://doi.org/10.1016/j.jorganchem.2004.08.033

(b) Furuyama R, Mitani M, Mohri JI, Mori R, Tanaka H, Fujita T. Ethylene/higher α-olefin copolymerization behavior of fluorinated bis(phenoxy−imine)titanium complexes with methylalumoxane: synthesis of new polyethylene-based block copolymers. Macromolecules 2005; 38: 1546-52. http://dx.doi.org/10.1021/ma0481104 DOI: https://doi.org/10.1021/ma0481104

(c) Senda T, Hanaoka H, Okado Y, Oda Y, Tsurugi H, Mashima K. Titanium complexes of silicon-bridged cyclopentadienyl−phenoxy ligands modified with fused-thiophene: synthesis, characterization, and their catalytic performance in copolymerization of ethylene and 1-hexene. Organometallics 2009; 28: 6915-26. http://dx.doi.org/10.1021/om900853q DOI: https://doi.org/10.1021/om900853q

(d) Kakinuki K, Fujiki M, Nomura K. Copolymerization of ethylene with α-olefins containing various substituents catalyzed by half-titanocenes: factors affecting the monomer reactivities. Macromolecules 2009; 42: 4585-95. http://dx.doi.org/10.1021/ma900576v DOI: https://doi.org/10.1021/ma900576v

(e) Itagaki K, Hasumi S, Fujiki M, Nomura K. Ethylene polymerization and ethylene/1-octene copolymerization using group 4 half-metallocenes containing aryloxo ligands, Cp*MCl2(OAr) [M = Ti, Zr, Hf; Ar = O-2,6-R2C6H3, R = tBu, Ph]—MAO catalyst systems. J Mol Catal A: Chem 2009; 303: 102-9. http://dx.doi.org/10.1016/j.molcata.2009.01.001 DOI: https://doi.org/10.1016/j.molcata.2009.01.001

(a) Salata MR, Marks TJ. Catalyst nuclearity effects in olefin polymerization. enhanced activity and comonomer enchainment in ethylene + olefin copolymerizations mediated by bimetallic group 4 phenoxyiminato catalysts. Macromolecules 2009; 42: 1920-33. http://dx.doi.org/10.1021/ma8020745 DOI: https://doi.org/10.1021/ma8020745

(b) Boussie TR, Diamond GM, Goh C, et al. A fully integrated high-throughput screening methodology for the discovery of new polyolefin catalysts: discovery of a new class of high temperature single-site group (IV) copolymerization catalysts. J Am Chem Soc 2003; 125: 4306-17. http://dx.doi.org/10.1021/ja020868k DOI: https://doi.org/10.1021/ja020868k

(c) Hanaoka H, Hino T, Nabika M, et al. Synthesis and characterization of titanium alkyl, oxo, and diene complexes bearing a SiMe2-bridged phenoxy-cyclopentadienyl ligand and their catalytic performance for copolymerization of ethylene and 1-hexene. J Organomet Chem 2007; 692: 4717-24. http://dx.doi.org/10.1016/j.jorganchem.2007.06.012 DOI: https://doi.org/10.1016/j.jorganchem.2007.06.012

(d) Nomura K, Oya K, Komatsu T, Imanishi Y. Effect of the cyclopentadienyl fragment on monomer reactivities and monomer sequence distributions in ethylene/α-olefin copolymerization by a nonbridged (cyclopentadienyl)(aryloxy) titanium(IV) complex−MAO catalyst system. Macromolecules 2000; 33: 3187-9. http://dx.doi.org/10.1021/ma000317j DOI: https://doi.org/10.1021/ma000317j

Hayatifar M, Pampaloni G, Bernazzani L, Capacchione C, Kissin YV, Galletti AMR. A new post-metallocene catalyst for alkene polymerization: copolymerization of ethylene and 1-hexene with titanium complexes bearing N,N-dialkylcarbamato ligands. Polym Int 2014; 63: 560-7. http://dx.doi.org/10.1002/pi.4558 DOI: https://doi.org/10.1002/pi.4558

Rishina LA, Lalayan SS, Gagieva SC, Tuskaev VA, Perepelytsyna EO, Kissin YV. Polymer 2013; 54: 6526-35. http://dx.doi.org/10.1016/j.polymer.2013.09.052 DOI: https://doi.org/10.1016/j.polymer.2013.09.052

(a) Kissin YV, Mink RI, Brandolini AJ, Nowlin TE. AlR2Cl/MgR2 combinations as universal cocatalysts for Ziegler–Natta, metallocene, and post-metallocene catalysts. J Polym Sci Polym Chem 2009; 47: 3271-85. http://dx.doi.org/10.1002/pola.23391 DOI: https://doi.org/10.1002/pola.23391

(b) Kissin YV, Nowlin TE, Mink RI, Brandolini AJ. A new cocatalyst for metallocene complexes in olefin polymerization. Macromolecules 2000; 33: 4599-601. http://dx.doi.org/10.1021/ma992047e DOI: https://doi.org/10.1021/ma992047e

Rishina LA, Galashina NM, Gagieva SC, Tuskaev VА, Kissin YV. Cocatalyst effect in propylene polymerization reactions with post-metallocene catalysts. Eur Polym J 2013; 49: 147-55. http://dx.doi.org/10.1016/j.eurpolymj.2012.10.018 DOI: https://doi.org/10.1016/j.eurpolymj.2012.10.018

Rishina LA, Lalayan SS, Galashina NM, Perepelytsyna EO, Medintseva TI, Kissin YV. Polymerization of linear higher α-olefins with a modified Ziegler catalyst. Polym Sci Ser B 2014; 56: 25-30. http://dx.doi.org/10.1134/S1560090414010096 DOI: https://doi.org/10.1134/S1560090414010096

Dyachenko VI, Galakhov MV, Kolomiets AF, Fokin AV. Steric effects of ortho substituents in reactions of phenols and phenolates with polyfluoroketones. Bull Acad Sci USSR Div Chem Sci 1989; 38: 831-6. http://dx.doi.org/10.1007/BF00953301 DOI: https://doi.org/10.1007/BF00953301

Hsieh ET, Randall JC. Monomer sequence distributions in ethylene-1-hexene copolymers. Macromolecules 1982; 15: 1402-6. http://dx.doi.org/10.1021/ma00233a036 DOI: https://doi.org/10.1021/ma00233a036

Nowlin TE, Kissin YV, Wagner KP. High activity Ziegler–Natta catalysts for the preparation of ethylene copolymers. J Polym Sci: Polym Chem (Pt A) 1988; 26: 755-64. http://dx.doi.org/10.1002/pola.1988.080260307 DOI: https://doi.org/10.1002/pola.1988.080260307

Kissin YV. Molecular weight distributions of linear polymers: Detailed analysis from GPC data. J Polym Sci: Polym Chem (Pt A) 1995; 33: 227-37. http://dx.doi.org/10.1002/pola.1995.080330205 DOI: https://doi.org/10.1002/pola.1995.080330205

Kissin YV, Nowlin TE, Mink RI, Brandolini AJ. Kinetics and mechanism of ethylene homopolymerization and copolymerization reactions with heterogeneous Ti-based Ziegler–Natta catalysts. Topics Catal 1999; 7: 69-98. http://dx.doi.org/10.1023/A:1019199330327

Kissin YV, Mink RI, Nowlin TE. Ethylene polymerization reactions with Ziegler–Natta catalysts. I. Ethylene polymerization kinetics and kinetic mechanism. J Polym Sci: Polym Chem (Pt A) 1999; 37: 4255-72. http://dx.doi.org/10.1002/(SICI)1099-0518(19991201)37:23<4255::AID-POLA2>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1099-0518(19991201)37:23<4255::AID-POLA2>3.0.CO;2-H

Kissin YV. Alkene Polymerization Reactions with Transition Metal Catalysts. Amsterdam: Elsevier 2008 [chapter 5]. DOI: https://doi.org/10.1016/S0167-2991(07)00005-5

Kissin YV, Nowlin TE, Mink RI, Brandolini AJ. In Metalorganic Catalysts for Synthesis and Polymerization. Kaminsky W, ed. Berlin:Springer 1999; p. 60. http://dx.doi.org/10.1007/978-3-642-60178-1_6 DOI: https://doi.org/10.1007/978-3-642-60178-1_6

Kissin YV, Nowlin TE, Mink RI, Brandolini AJ. Ethylene polymerization reactions with Ziegler–Natta catalysts. III. Chain-end structures and polymerization mechanism. J Polym Sci: Polym Chem (Pt A) 1999; 37: 4281-94. http://dx.doi.org/10.1002/(SICI)1099-0518(19991201)37:23<4281::AID-POLA4>3.0.CO;2-6 DOI: https://doi.org/10.1002/(SICI)1099-0518(19991201)37:23<4281::AID-POLA4>3.0.CO;2-6

Rishina LA, Galashina NM, Gagieva SC, Tuskaev VА, Kissin YV. Polymerization of olefins catalyzed by a dichloride complex of titanium with a dioxolane dicarbonate ligand: The promoting effect of LiCl and MgCl2. Polym Sci (Ser B) 2011; 53: 42-51. http://dx.doi.org/10.1134/S1560090411020072 DOI: https://doi.org/10.1134/S1560090411020072

Ref 19B [chapter 3].

Kissin YV, Beach DL. Copolymerization of ethylene with higher linear α-olefins—reactivity ratios. J Polym Sci Polym Chem Ed 1984; 22: 333-40. http://dx.doi.org/10.1002/pol.1984.170220206 DOI: https://doi.org/10.1002/pol.1984.170220206

Kissin YV. Modeling differential scanning calorimetry melting curves of ethylene/α-olefin copolymers. J Polym Sci: Polym Phys (Pt B) 2011; 49: 195-205. http://dx.doi.org/10.1002/polb.22164 DOI: https://doi.org/10.1002/polb.22164

Downloads

Published

2015-01-02

How to Cite

Rishina, L. A., Lalayan, S. S., Gagieva, S. C., Тuskaev V. А. ., Shchegolikhin, A. N., Shashkin, D. P., & Kissin, Y. V. (2015). Titanium Complex Containing a Saligenin Ligand - New Universal Post-Metallocene Polymerization Catalyst: Copolymerization of Ethylene with Higher α-Olefins. Journal of Research Updates in Polymer Science, 3(4), 216–226. https://doi.org/10.6000/1929-5995.2014.03.04.3

Issue

Section

Articles