Effect of Cenosphere Fly Ash on the Thermal, Mechanical, and Morphological Properties of Rigid PVC Foam Composites

Authors

  • Parisa Khoshnoud Department of Materials Science and Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53201, USA
  • Nidal Abu-Zahra Department of Materials Science and Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53201, USA

DOI:

https://doi.org/10.6000/1929-5995.2015.04.01.1

Keywords:

Polyvinyl Chloride Foam, Fly ash, Characterization, Tensile, Flexural, DMA, SEM, XRD, TGA, DSC.

Abstract

Cenosphere fly ash is a byproduct of coal combustion processes of power plants. It is composed of hollow, hard shelled, minute spheres, which are made up of silica, iron, and alumina. In this study, cenosphere fly ash is incorporated into rigid PVC foam to improve thermal and mechanical properties of their composites. Microstructural, physical, mechanical, and thermal properties of rigid PVC foam extruded with different loadings of cenosphere fly ash (6, 12, 18phr) are characterized. The measured density of the extruded PVC foam composites increased with cenosphere content, indicating a hindrance to the foaming process. Tensile and flexural mechanical properties improved at higher cenosphere content, while the impact strength decreased at initial loading of 6 phr of cenosphere particles and remained steady at higher loadings. Thermal characterization of the extruded samples showed that glass transition temperature remained almost unaffected, while TGA analysis revealed no change in the initial degradation temperature and significant improvement in the final degradation temperature. Thermo-mechanical properties measured by DMA revealed a remarkable improvement in the viscoelastic properties of the composites reinforced with cenosphere particles. SEM analysis of the composites microstructure confirmed that the cenosphere particles were mechanically interlocked with good interfacial interaction in the PVC matrix.

References

Drozhzhin VS, Danilin LD, Pikulin IV, Khovrin AN, Maximova NV, Regiushev SA, Pimenov VG. Functional materials on the basis of cenospheres, World of Coal Ash conference; Lexington, Kentucky, USA 2005. http://www.flyash.info/ 2005/47dro.pdf

Matsunaga T, Kim JK, Hardcastle S, Rohatgi PK. Crystallinity and selected properties of fly ash particles. J Mat Sci Eng 2002; A325: 333-43. http://dx.doi.org/10.1016/S0921-5093(01)01466-6 DOI: https://doi.org/10.1016/S0921-5093(01)01466-6

Sreekanth MS, Bambole VA. Effect of particle size and concentration of flyash on properties of polyester thermoplastic elastomer composites. J Miner Mat CharacEng 2009; 8(3): 237-48. http://www.scirp.org/journal/Paper Information.aspx?PaperID=20617#.VSKV9_nF-8A DOI: https://doi.org/10.4236/jmmce.2009.83021

Kadam P, Pawar B, Mhaske S. Studies in effect of low concentration of cenosphere on mechanical, thermal, electrical, crystallinity, colorimetric and morphological properties of epoxy cured with triethylenettramine, J Miner Mat Charac Eng 2013; 1: 117-23. http://dx.doi.org/10.4236/jmmce.2013.14021 DOI: https://doi.org/10.4236/jmmce.2013.14021

White SC, Case ED. Characterization of fly ash from coal-fired power plants. J Mat Sci 1990; 25: 5215-19. http://dx.doi.org/10.1007/BF00580153 DOI: https://doi.org/10.1007/BF00580153

Das A, Satapathy BK. Structural, thermal, mechanical and dynamic mechanical properties of cenosphere filled polypropylene composites. J Mat Des 2011; 32: 1477-84. http://dx.doi.org/10.1016/j.matdes.2010.08.041 DOI: https://doi.org/10.1016/j.matdes.2010.08.041

Labella M, Zeltmann SE, Shunmugasamy VC, Gupta N, Rohatgi PK. Mechanical and thermal properties of fly ash/vinyl ester syntactic foams. J Fuel 2014; 121: 240-49. http://dx.doi.org/10.1016/j.fuel.2013.12.038 DOI: https://doi.org/10.1016/j.fuel.2013.12.038

Senapati AK, Bhatta A, Mohanty S, Mishra PC, Routra BC. An extensive literature review on the usage of fly Ash as a reinforcing agent for different matrices. Int J Innov Sci Mod Eng 2014; 2(3); 4-9. http://www.sciencedirect.com/science/ article/pii/S0261306909005561

Deepthi MV, Sharma M, Sailaja RRN, Anantha P, Sampathkumaran P, Seetharamu S. Mechanical and thermal characteristics of high density polyethylene–fly ash cenospheres composites. J Mat Des 2010; 31: 2051-60. http://dx.doi.org/10.1016/j.matdes.2009.10.014 DOI: https://doi.org/10.1016/j.matdes.2009.10.014

Jena H, Pandit MK, Pradhan AK. Study the Impact Property of Laminated Bamboo-Fibre Composite Filled with Cenosphere. Int J Env Sci Develop 2012; 3(5): 456-59. http://dx.doi.org/10.7763/IJESD.2012.V3.266 DOI: https://doi.org/10.7763/IJESD.2012.V3.266

Qiao J, Amirkhizi AV, Schaaf K, Nemat-Nasser S. Dynamic mechanical analysis of fly ash filled polyurea elastomer. J Eng Mat Tech 2011; 133: 110161-7. http://dx.doi.org/10.1115/1.4002650 DOI: https://doi.org/10.1115/1.4002650

Wasekar PA, Kadam PG, Mhaske ST. Effect of cenosphere concentration on the mechanical, thermal, rheological and morphological properties of nylon 6, J Minerals and Materials Characterization and Engineering 2012; 11: 807-12. http://www.scirp.org/journal/jmmce/ DOI: https://doi.org/10.4236/jmmce.2012.118070

Rohatgi PK, Matsunaga T, Gupta N. Compressive and ultrasonic properties of polyester/fly ash composites. J Mat Sci 2009; 44(6): 1485-93. http://dx.doi.org/10.1007/s10853-008-3165-1 DOI: https://doi.org/10.1007/s10853-008-3165-1

Kulkarni MB, Bambole VA, Mahanwar PA. Effect of particle size of fly ash cenospheres on the properties of acrylonitrile butadiene styrene-filled composites. J Thermoplast Compos Mater 2014; 27(2): 251-67. http://dx.doi.org/10.1177/0892705712443253 DOI: https://doi.org/10.1177/0892705712443253

Manjunath BR, Sadasivamurthy P, Reddy PV, Haridas RK. Studies on cenospheres as fillers for PVC compounds for applications in electrical cables. J American Institute of Chemists 2013; 86(1): 10-14. http://www.theaic.org/pub_ thechemist_journals/Vol-86-No-1/Vol-86-No1-Article-2.html

Aashis SR, Saravanan S, Kishore Praveen CR, Madras G. Dielectric impedance studies of Poly(vinyl butyral)–cenosphere composite films. J Polym Compos 2014; 35: 1636-43. http://dx.doi.org/10.1002/pc.22817 DOI: https://doi.org/10.1002/pc.22817

Thakur S, Chauhan SR. Study on mechanical and tribological behavior of cenosphere filled vinylester composites- A Taguchi method. Indian J Eng Mater Sci 2013; 20: 539-48. http://nopr.niscair.res.in/bitstream/ 123456789/25582/1/IJEMS%2020(6)%20539-548.pdf

Chand N, Sharma P, Fahim M. Abrasive wear behavior of LDPE filled with silane treated flyash cenospheres. J Compos Interfaces 2011; 18: 575-86. http://dx.doi.org/10.1163/156855411X612267 DOI: https://doi.org/10.1163/156855411X612267

Chand N, Sharma P, Fahim M. Correlation of mechanical and tribological properties of organosilane modified cenosphere filled high density polyethylene. J Mat Sci Eng A 2010; 527: 5873-8. http://dx.doi.org/10.1016/j.msea.2010.06.022 DOI: https://doi.org/10.1016/j.msea.2010.06.022

Sharma J, Chand N, Bapat MN. Effect of cenosphere on dielectric properties of low density polyethylene. J Results Phys 2012; 2: 26-33. http://dx.doi.org/10.1016/j.rinp.2012.03.003 DOI: https://doi.org/10.1016/j.rinp.2012.03.003

Chauhan SR, Thakur S. Effect of micro size cenosphere particles reinforcement on tribological characteristics of vinylester composites under dry sliding conditions. J Miner Mat Charac Eng 2012; 11: 938-46. http://www.SciRP.org/ journal/jmmce DOI: https://doi.org/10.4236/jmmce.2012.1110092

Usta N. Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter. J Appl Polym Sci 2012; 124: 3372-82. http://dx.doi.org/10.1002/app.35352 DOI: https://doi.org/10.1002/app.35352

Chow JD, Chai WL, Yeh CM, Chuang FS. Recycling and application characteristics of fly ash from municipal solid waste incinerator blended with polyurethane foam. J Environ Eng Sci 2008; 25(4): 461-71. http://dx.doi.org/10.1089/ees.2006.0037 DOI: https://doi.org/10.1089/ees.2006.0037

Gupta N, Woldesenbetb E, Mensah P. Compression properties of syntactic foams: effect of cenosphere radius ratio and specimen aspect ratio. J Composites: Part A 2004; 35: 103-11. http://dx.doi.org/10.1016/j.compositesa.2003.08.001 DOI: https://doi.org/10.1016/j.compositesa.2003.08.001

Rabinovich EB, Isner JD, SIDOR JA, Wiedl DJ. Effect of extrusion conditions on rigid PVC foam. J Vin Add Tech 1997; 3(3): 210-15. http://dx.doi.org/10.1002/vnl.10193 DOI: https://doi.org/10.1002/vnl.10193

Thomas NL. Rigid PVC foam, Formulating for sustainability. Proceedings of the blowing agent and foaming process 2004: pp. 179-89.

Eaves D. Handbook of Polymer Foams. Rapra Technology Limited 2004.

Khoshnoud P, Gunashekar S, Jamel MM, Abu-Zahra N. Comparative analysis of rigid PVC foam reinforced with class C and class F fly ash. J Miner Mat Charac Eng 2014; 2: 554-65. http://dx.doi.org/10.4236/jmmce.2014.26057 DOI: https://doi.org/10.4236/jmmce.2014.26057

Lodi PC, Souza BBD. Thermo-gravimetric analysis (TGA) after different exposures of High Density Polyethylene (HDPE) and Poly Vinyl Chloride (PVC) geomembranes. Elec J Geotech Eng 2012; 17: 3339-49. http://www.ejge.com/ 2012/Ppr12.308alr.pdf

Iulianelli CGV, Maciel PMC, Tavares MIB. Preparation and characterization of PVC/Natural filler composites. J Macromolecular Symposia 2011; 299: 227-33. http://dx.doi.org/10.1002/masy.200900104 DOI: https://doi.org/10.1002/masy.200900104

Ráthy I, Kuki A, Borda J, Deák G, Zsuga M, Marossy K. Preparation and characterization of Poly(vinyl Chloride)-continuous carbon fiber composites. J Appl Polym Sci 2012; 124: 190-4. http://dx.doi.org/10.1002/app.33617 DOI: https://doi.org/10.1002/app.33617

Downloads

Published

2015-04-17

How to Cite

Khoshnoud, P., & Abu-Zahra, N. (2015). Effect of Cenosphere Fly Ash on the Thermal, Mechanical, and Morphological Properties of Rigid PVC Foam Composites. Journal of Research Updates in Polymer Science, 4(1), 1–14. https://doi.org/10.6000/1929-5995.2015.04.01.1

Issue

Section

Articles