Manufacturing and Characterization of High Impact Polystyrene (HIPS) Reinforced with Treated Sugarcane Bagasse

Authors

  • Kelly Cristina Coelho de Carvalho Benini Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP - Univ. Estadual Paulista, 12516-410 Guaratinguetá, São Paulo, Brazil
  • Herman Jacobus Voorwald Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP - Univ. Estadual Paulista, 12516-410 Guaratinguetá, São Paulo, Brazil
  • Maria Odila Hilá¡rio Cioffi Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP - Univ. Estadual Paulista, 12516-410 Guaratinguetá, São Paulo, Brazil

DOI:

https://doi.org/10.6000/1929-5995.2017.06.01.1

Keywords:

High impact polystyrene, Mechanical properties, Thermal properties, Sugarcane Bagasse fibers.

Abstract

Natural fibers obtained from sugarcane bagasse were used as reinforcement for high impact polystyrene (HIPS) composites. Fibers were chemically treated with an alkaline solution and then bleached with sodium chlorite and acetic acid, in order to remove amorphous constituents and improve adhesion with polimeric matrix.The alkali-treated and bleached fibers over a range of 10-30 wt% were mixed with HIPS and placed in an injector chamber in order to obtain tensile and flexural test specimens. Chemical treatment effects on composites properties were evaluated through mechanical tests and thermal and microscopy analysis. Experimental results show that composites with 30 wt% of alkali-treated fibers present an improvement in the tensile strength (17%), tensile modulus (96%) and flexural modulus (34%) with a consequent decrease in the ductility and in the thermal properties in comparisson to pure HIPS. An huge increase of 191% in the flexural modulus for composites with 30 wt% of bleached fibers was obtained compared to pure HIPS.

References

Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos Part A: Appl Sci Manuf 2010; 41: 806-19.

http://dx.doi.org/10.1016/j.compositesa.2010.03.005 DOI: https://doi.org/10.1016/j.compositesa.2010.03.005

Awal A, Cescutti G, Ghosh SB, Müssig J. Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Compos Part A: Appl Sci Manuf 2011; 42: 50-6.

http://dx.doi.org/10.1016/j.compositesa.2010.10.007 DOI: https://doi.org/10.1016/j.compositesa.2010.10.007

Chin-San Wu. Characterization of cellulose acetate-reinforced aliphatic-aromatic copolyester composites. Carbohyd Polym 2012; 87: 1249-56.

http://dx.doi.org/10.1016/j.carbpol.2011.09.009 DOI: https://doi.org/10.1016/j.carbpol.2011.09.009

Qin L, Qiu J, Liu M, Ding S, Shao L, Lü S, Zhan G, Zhao Y, Fu X. Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate). Chem Eng J 2011; 166: 772-78.

http://dx.doi.org/10.1016/j.cej.2010.11.039 DOI: https://doi.org/10.1016/j.cej.2010.11.039

Haque MM, Hasan M, Islam MS, Ali ME. Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour Technol 2009; 100: 4903-06.

http://dx.doi.org/10.1016/j.biortech.2009.04.072 DOI: https://doi.org/10.1016/j.biortech.2009.04.072

Hemsri S, Grieco K, Asandei AD, Parnas RS. Wheat gluten composites reinforced with coconut fiber. Compos A Appl Sci Manuf 2012; 43: 1160-68.

http://dx.doi.org/10.1016/j.compositesa.2012.02.011 DOI: https://doi.org/10.1016/j.compositesa.2012.02.011

Antich P, Vázquez A, Mondragon I, Bernal C. Mechanical behavior of high impact polystyrene reinforced with short sisal fibers. Compos A Appl Sci Manuf 2006; 37: 139-50.

http://dx.doi.org/10.1016/j.compositesa.2004.12.002 DOI: https://doi.org/10.1016/j.compositesa.2004.12.002

Hashim MY, Ros Lan MN, Amin AM, Zaidi AMA, Ariffin S. Mercerization Treatment Parameter Effect on Natural Fiber Reinforced Polymer Matrix Composite: A Brief Review. Eng and Technol 2012; 68: 1638-44.

George G, Jose ET, Jayanarayanan K, Nagarajan ER, Skrifvars M, Joseph K. Novel bio-commingled composites based on jute/polypropylene yarns: Effect of chemical treatments on the mechanical properties. Compos Part A: Appl Sci Manuf 2012; 43: 219-30.

http://dx.doi.org/10.1016/j.compositesa.2011.10.011 DOI: https://doi.org/10.1016/j.compositesa.2011.10.011

Kabir MM, Lau HWKT, Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos Part B Eng 2012; 43: 2883-92.

http://dx.doi.org/10.1016/j.compositesb.2012.04.053 DOI: https://doi.org/10.1016/j.compositesb.2012.04.053

Muensri P, Kunanopparat T, Menut P, Siriwattanayotin S. Effect of lignin removal on the properties of coconut coir fiber/wheat gluten biocomposite. Compos A Appl Sci Manuf 2011; 42: 173-79.

http://dx.doi.org/10.1016/j.compositesa.2010.11.002 DOI: https://doi.org/10.1016/j.compositesa.2010.11.002

Ibrahim MM, Dufresne A, El-Zawawy WK, Agblevorinal FA. Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohyd Polym 2010; 81: 811-19.

http://dx.doi.org/10.1016/j.carbpol.2010.03.057 DOI: https://doi.org/10.1016/j.carbpol.2010.03.057

Sawpan MA, Pickering KL, Fernyhough A. Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos A Appl Sci Manuf 2012; 43: 519-26.

http://dx.doi.org/10.1016/j.compositesa.2011.11.021 DOI: https://doi.org/10.1016/j.compositesa.2011.11.021

Bessadok A, Roudesli S, Marais S, Follain N, Lebrun L. Alfa fibres for unsaturated polyester composites reinforcement: Effects of chemical treatments on mechanical and permeation properties. Compos A Appl Sci Manuf 2008; 40: 184-95.

http://dx.doi.org/10.1016/j.compositesa.2008.10.018 DOI: https://doi.org/10.1016/j.compositesa.2008.10.018

Ben Sghaier AEOB, Chaabouni Y, Msahli S, Sakli F. Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind Crop Prod 2012; 36: 257-66.

http://dx.doi.org/10.1016/j.indcrop.2011.09.012 DOI: https://doi.org/10.1016/j.indcrop.2011.09.012

Brígida AIS, Calado VMA, Gonçalves LRB, Coelho MAZ. Effect of chemical treatments on properties of green coconut fiber. Carbohyd Polym 2010; 79: 832-38.

http://dx.doi.org/10.1016/j.carbpol.2009.10.005 DOI: https://doi.org/10.1016/j.carbpol.2009.10.005

Alsaeed T, Yousif BF, Ku H. The potencial of using date palm fibres as reinforcement for polymeric composites. Mater Design 2013; 43: 177-84.

http://dx.doi.org/10.1016/j.matdes.2012.06.061 DOI: https://doi.org/10.1016/j.matdes.2012.06.061

Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Gloaguen V, Krausz P. Influence of various chemical treatments on the composition and structure of hemp fibres. Compos A Appl Sci Manuf 2008; 39: 514-22.

http://dx.doi.org/10.1016/j.compositesa.2007.12.001 DOI: https://doi.org/10.1016/j.compositesa.2007.12.001

Kalia S, Kaith BS, Kaur I. Pretreatments of Natural Fibers and their Application as Reinforcing Material in Polymer Composites - A Review. Poly Eng Sci 2009; 49: 1253-72.

http://dx.doi.org/10.1002/pen.21328 DOI: https://doi.org/10.1002/pen.21328

Huang Z, Wang N, Zhang Y, Hu H, Luo Y. Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly (vinyl chloride) composites. Compos A Appl Sci Manuf 2012; 43: 114-20.

http://dx.doi.org/10.1016/j.compositesa.2011.09.025 DOI: https://doi.org/10.1016/j.compositesa.2011.09.025

Benini KCCC, Voorwald HJC, Cioffi MOH. Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Eng 2011; 10: 3246-51.

http://dx.doi.org/10.1016/j.proeng.2011.04.536 DOI: https://doi.org/10.1016/j.proeng.2011.04.536

Vilay V, Mariatti M, Taib RM, Todo M. Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Compos Sci Technol 2008; 68: 631-38.

http://dx.doi.org/10.1016/j.compscitech.2007.10.005 DOI: https://doi.org/10.1016/j.compscitech.2007.10.005

Luz SM, Caldeira-Pires A, Ferrão PMC. Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LCA as strategy for automotive components. Resour Conserv Recy 2010; 54: 1135-44.

http://dx.doi.org/10.1016/j.resconrec.2010.03.009 DOI: https://doi.org/10.1016/j.resconrec.2010.03.009

Mulinari DR, Voorwald HJC, Cioffi MOH, Da Silva MLCP, Cruz TG, Saron C. Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Compos Sci Technol 2009; 69: 214-19.

http://dx.doi.org/10.1016/j.compscitech.2008.10.006 DOI: https://doi.org/10.1016/j.compscitech.2008.10.006

Gurgel LVA, Freitas RP, Gil LF. Adsorption of Cu (II), Cd (II), and Pb (II) from aqueous single metal solutions by sugarcane bagasse and mercerized sugarcane bagasse chemically modified with succinic anhydride. Carbohyd Polym 2008; 74: 922-29.

http://dx.doi.org/10.1016/j.carbpol.2008.05.023 DOI: https://doi.org/10.1016/j.carbpol.2008.05.023

Shenoy AV. Rheology of filled polymer systems. Dordrecht: Kluwer Academic Publishers, 1999.

http://dx.doi.org/10.1007/978-94-015-9213-0 DOI: https://doi.org/10.1007/978-94-015-9213-0

Akram T, Memon SA, Obaid H. Production of low cost self compacting concrete using bagasse ash. Const Build Mat 2009; 23: 703-12.

http://dx.doi.org/10.1016/j.conbuildmat.2008.02.012 DOI: https://doi.org/10.1016/j.conbuildmat.2008.02.012

Onésippe C, Passe-Coutrin N, Toro F, Delvasto S, Bilba K, Arsène M-A. Sugar cane bagasse fibres reinforced cement composites: Thermal considerations. Compos A Appl Sci Manuf 2010; 41: 549-56.

http://dx.doi.org/10.1016/j.compositesa.2010.01.002 DOI: https://doi.org/10.1016/j.compositesa.2010.01.002

Jang JY, Jeong TK, Oh HJ, Youn JR, Song YS. Thermal stability and flammability of coconut fiber reinforced poly (lactic acid) composites. Compos Part B Eng 2012; 43: 2434-38.

http://dx.doi.org/10.1016/j.compositesb.2011.11.003 DOI: https://doi.org/10.1016/j.compositesb.2011.11.003

Carvalho KCC, Mulinari DR, Voorwald HJC, Cioffi, MOH. Chemical modification effect on the mechanical properties of HIPS/coconut fibers composites. Bioresources 2010; 5: 1143-55.

Le Duc A, Vergnes B, Budtova T. Polypropylene/natural fibres composites: analysis of fibre dimensions after compounding and observations of fibre rupture by rheo-optics. Compos A Appl Sci Manuf 2011; 42: 1727-37.

http://dx.doi.org/10.1016/j.compositesa.2011.07.027 DOI: https://doi.org/10.1016/j.compositesa.2011.07.027

Le Moigne N, Oever M, Budtova T. A statistical analysis of fibre size and shape distribution after compounding in composites reinforced by natural fibres. Compos A Appl Sci Manuf 2011; 42: 1542-50.

http://dx.doi.org/10.1016/j.compositesa.2011.07.012 DOI: https://doi.org/10.1016/j.compositesa.2011.07.012

Morandim-Giannetti AA, Agnelli JAM, Lanças BZ, Magnabosco R, Casarin SA, Bettini SHP. Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties. Carbohyd Polym 2012; 87: 2563-68.

http://dx.doi.org/10.1016/j.carbpol.2011.11.041 DOI: https://doi.org/10.1016/j.carbpol.2011.11.041

Kalita E, Nath BK, Deb P, Agan F, Islam MR, Saikia K. High quality fluorescent cellulose nanofibers from endemic rice husk: Isolation and characterization. Carbohyd Polym, 2015; 122: 308-313.

http://dx.doi.org/10.1016/j.carbpol.2014.12.075 DOI: https://doi.org/10.1016/j.carbpol.2014.12.075

Benini KCCC, Brocks T, Montoro SR, Cioffi MOH, Voorwald, HJC. Effect of fiber chemical treatment of nonwoven coconut fiber/epoxy composites adhesion obtained by RTM process. Polymer Composites, 2015.

http://dx.doi.org/10.1002/pc.23842 DOI: https://doi.org/10.1002/pc.23842

Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD. A comparative study on properties of micro and nanopapers producedfrom cellulose and cellulose nanofibres. Carbohyd Polym 2015; 118: 1-8.

http://dx.doi.org/10.1016/j.carbpol.2014.10.007 DOI: https://doi.org/10.1016/j.carbpol.2014.10.007

Agung EH, Sapuan SM, Hamdan MM, Zaman HMDK, Mustofa U. Study on abaca (Musa textilis Nee) fibre reinforced high impact polystyrene (HIPS) composites by thermogravimetric analysis (TGA). Int J Phys Sci 2011; 6: 2100-06.

Bachtiar D, Salit MS, Zainudin E, Abdan K, Dahlan KZHM. Effects of alkaline treatment and a compatibilizing agent on tensile properties of sugar palm fibre-reinforced high impact polystyrene composites. BioResources 2011; 6: 4815-23.

Aziz SH, Ansell MP. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 - polyester resin matrix. Compos Sci Technol 2004; 64: 1219-1230.

http://dx.doi.org/10.1016/j.compscitech.2003.10.001 DOI: https://doi.org/10.1016/j.compscitech.2003.10.001

Downloads

Published

2017-04-06

How to Cite

Benini, K. C. C. de C., Voorwald, H. J., & Cioffi, M. O. H. (2017). Manufacturing and Characterization of High Impact Polystyrene (HIPS) Reinforced with Treated Sugarcane Bagasse. Journal of Research Updates in Polymer Science, 6(1), 2–11. https://doi.org/10.6000/1929-5995.2017.06.01.1

Issue

Section

Articles