Analysis of Stress Concentration Factor for Tensile Characteristics of Syntactic Foam Using Finite Element Method

Authors

  • Zulzamri Salleh Centre for Future Materials, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia
  • Md Mainul Islam Centre for Future Materials, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia
  • Jayantha Ananda Epaarachchi Centre for Future Materials, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia

DOI:

https://doi.org/10.6000/1929-5995.2017.06.01.4

Keywords:

Finite element analysis, Syntactic foam, Stress, Concentration, Factor, glass microballoon, resin.

Abstract

This paper presented the stress concentration factor (SCF) around the half circular edge of tensile specimens made of syntactic foam using finite element software Strand7 software. The study is a preliminary effort, which investigates the effect of variations of crack geometry on the stress concentration factor on a tensile specimen subjected to a constant, uniform, uniaxial tensile load. The material property is graded for varying Young’s Modulus and Poisson’s Ratio with different composition of glass microballoons. Finally, a uniform pressure is applied at the top and the model is constrained with symmetric boundary conditions at the left and bottom. As the result, these numerical results for both SCF experimental and simulation model are compared to those obtained from analytic fracture mechanics procedures and are found to be varied. In addition, the SCF is sensitive to the modulus of elasticity, particularly for lower composition weight percentage (wt.%), while it is also varied with the different weight percentage (wt.%) of glass microballoons, which is led by 2 wt.% specimen.

References

Sburlati R, Atashipour S, Atashipour S. Reduction of the stress concentration factor in a homogeneous panel with hole by using a functionally graded layer. Composites: Part B 2014; 61: 99-109. https://doi.org/10.1016/j.compositesb.2014.01.036 DOI: https://doi.org/10.1016/j.compositesb.2014.01.036

Nagpal S, Jain N, Sayal S. Stress concentration and its mitigation techniques in flat plate with singularities: a critical review. Eng Journal 2012; 16(1): 1-16. https://doi.org/10.4186/ej.2012.16.1.1 DOI: https://doi.org/10.4186/ej.2012.16.1.1

Chao C, Lu L, Chen C, Chen F. Analytical solution for a reinforcement layer bonded to an elliptic hole under a remote uniform load. Int Journal Solids Structure 2009; 46: 2959-65. https://doi.org/10.1016/j.ijsolstr.2009.03.025 DOI: https://doi.org/10.1016/j.ijsolstr.2009.03.025

Batista M. On the stress concentration factor around a hole in an infinite plate subjected to a uniform load at infinity. Int Journal Mechanic Science 2011; 53(4): 254-61. https://doi.org/10.1016/j.ijmecsci.2011.01.006 DOI: https://doi.org/10.1016/j.ijmecsci.2011.01.006

Abdul‐Aziz A, Abumeri G, Garg M, Young P. Structural Evaluation of a Nickel Base Super Alloy Metal Foam Via NDE and Finite Element. In: Monitoring SSSaMNEaH, editor. Behavior and Mechanics of Multifunctional and Composite Materials II, Conference SSN04; San Diego, California USA: SPIE; 9‐13 March 2008. https://doi.org/10.1117/12.776343 DOI: https://doi.org/10.1117/12.776343

Reale S, Tognarelli L, Crutzen S. The use of fracture mechanics methodologies for NDT results evaluation and comparison. Nuclear Engineering and Design 1995; 158: 397-407. https://doi.org/10.1016/0029-5493(95)01046-K DOI: https://doi.org/10.1016/0029-5493(95)01046-K

Ingraffea A, Wawrzynek P. Computational Fracture Mechanics: A survey of the field. European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004. https://doi.org/10.1002/0470091355.ecm032 DOI: https://doi.org/10.1002/0470091355.ecm032

Poveda R, Gupta N, Porfiri M. Poisson's ratio of hollow particle filled composites. Materials Letters 2010; 64: 2360-2. https://doi.org/10.1016/j.matlet.2010.07.063 DOI: https://doi.org/10.1016/j.matlet.2010.07.063

Gupta N, Woldesenbet E, Mensah P. Compression Properties of Syntactic Foams: Effect of Cenosphere Radius Ratio and Specimen Aspect Ratio. Composites: Part A 2004; 35: 103-11. https://doi.org/10.1016/j.compositesa.2003.08.001 DOI: https://doi.org/10.1016/j.compositesa.2003.08.001

Gladysz G, B BP, G GM, Lula J. Three-phase syntactic foams: structure property relationships. Journal Material Science 2006; 41: 4085-92. https://doi.org/10.1007/s10853-006-7646-9 DOI: https://doi.org/10.1007/s10853-006-7646-9

Lin T, Gupta N, Talalayev A. Thermal conductivity of multiphase particulate composite materials. Journal Material Science 2009; 44: 1540-50. https://doi.org/10.1007/s10853-008-3040-0 DOI: https://doi.org/10.1007/s10853-008-3040-0

Jain N, Mittal N. Finite element analysis for stress concentration and deflection in isotropic orthotropic and laminated composite plates with central circular hole under transverse static loading. Material Science and Engineering, A 2008; 498: 115-24. https://doi.org/10.1016/j.msea.2008.04.078 DOI: https://doi.org/10.1016/j.msea.2008.04.078

Gupta N, Woldesenbet E, Kishore, Sankaran S. Studies on Compressive Failure Features in Syntactic Foam Material. Journals of Sandwich Structures and Materials 2001; 4: 249-72. https://doi.org/10.1177/1099636202004003140 DOI: https://doi.org/10.1177/1099636202004003140

Islam MM, Kim HS. Novel syntactic foams made of ceramic hollow micro-spheres and starch: theory, structure and properties. Journal of Materials Science 2007; 42(15): 6123-32. https://doi.org/10.1007/s10853-006-1091-7 DOI: https://doi.org/10.1007/s10853-006-1091-7

International A. ASTM D 638-10 Standard Test Method for Tensile Properties of Plastics. USA: ASTM International; 2010.

Warren C, Richard G. Stress Concentration Factor. Roark’s Formula for Stress and Strain 7th edition ed. USA: Mc Graw- Hill; 2002. p. 784-5.

Strand7. Introduction to the Strand7 Finite Element Analysis System. 3rd edition ed. Sydney, Australia2010.

Timoshenko S, Goodier J. Theory of Elasticity. Third Edition ed: McGraw-Hill, Inc; 1969.

Yang L, Zhu H, Tan D. Influence of Soft Filler on Stress Concentration Factor of Elliptic Holes in a Rectangular Plate. Tianjin University and Springer-Verlag Berlin Heidelberg 2012; 18: 117-20. https://doi.org/10.1007/s12209-012-1614-z DOI: https://doi.org/10.1007/s12209-012-1614-z

Shigley JE, Mischke CR, Budynas RG. Mechanical Engineering Design. New York USA: McGraw-Hill; 2004.

Adis J, Muminovic, Saric I, Repcic N. Analysis of Stress Concentration Factors using Different Computer Software Solutions. . Procedia Engineering 2014; 69: 609-15. https://doi.org/10.1016/j.proeng.2014.03.033 DOI: https://doi.org/10.1016/j.proeng.2014.03.033

Spotts MF, Shoup TE, Hornberger LE. Design of Machine Elements. 8th ed. New Jersey: Prentice Hall; 2004.

Darwish F, Tashtoush G, Gharaibeh M. Stress concentration analysis for countersunk rivet holes in orthotropic plates. European Journal of Mechanics A/Solids 2013; 37: 69-78. https://doi.org/10.1016/j.euromechsol.2012.04.006 DOI: https://doi.org/10.1016/j.euromechsol.2012.04.006

Pilkey W, Pilkey D. Peterson’s Stress Concentration Factors. 3rd ed. New York USA: John Wiley & Sons; 2008. DOI: https://doi.org/10.1002/9780470211106

Shivakumar K, Newman J. Stress Concentrations for Straight-shank and Countersunk Holes in Plates Subjected to Tension, Bending, and Pin Loading. In: National Aeronautics and Space Administration OoM, Scientific and Technical Information Program, editor. NASA Technical Paper 1992.

Wu H, Mu B. On stress concentrations for isotropic/ orthotropic plates and cylinders with a circular hole. Composites: Part B 2003; 34(2): 127-34. https://doi.org/10.1016/S1359-8368(02)00097-5 DOI: https://doi.org/10.1016/S1359-8368(02)00097-5

Kotousov A, Wang C. Three-dimensional stress constraint in an elastic plate with a notch. International Journal of Solids and Structures 2002; 77: 1665-81. https://doi.org/10.1016/s0020-7683(02)00340-2 DOI: https://doi.org/10.1016/S0020-7683(02)00340-2

Gupta N, Ye R, Porfiri M. Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Composites Part B: Engineering 2010; 41(3): 236-45. https://doi.org/10.1016/j.compositesb.2009.07.004 DOI: https://doi.org/10.1016/j.compositesb.2009.07.004

Gupta N, Nagorny R. Tensile properties of glass microballoon-epoxy resin syntactic foams. Journal of Applied Polymer Science 2006; 102(2): 1254-61. https://doi.org/10.1002/app.23548 DOI: https://doi.org/10.1002/app.23548

Wouterson EM, Boey FYC, Hu X, Wong SC. Effect of fiber reinforcement on the tensile, fracture and thermal properties of syntactic foam. Polymer 2007; 48: 3183-91. https://doi.org/10.1016/j.polymer.2007.03.069 DOI: https://doi.org/10.1016/j.polymer.2007.03.069

Swetha C, Kumar R. Quasi-static uni-axial compression behaviour of hollow glass microspheres/epoxy based syntactic foams. Materials & Design 2011; 32(8-9): 4152-63. https://doi.org/10.1016/j.matdes.2011.04.058 DOI: https://doi.org/10.1016/j.matdes.2011.04.058

Aureli M, Porfiri M, Gupta N. Effect of polydispersivity and porosity on the elastic properties of hollow particle filled composites. Mechanic Materials 2010; 42: 726-39. https://doi.org/10.1016/j.mechmat.2010.05.002 DOI: https://doi.org/10.1016/j.mechmat.2010.05.002

Mbandezi M, Mabuza R. The Effect of Variations of Crack Geometry on the Stress Concentration Factor in a Thin Plate Using Finite Element Method. 18th World Conference on Nondestructive Testing; Durban, South Africa2010.

Collins J. Failure of materials in mechanical design analysis, prediction, prevention. 2nd ed. New York, USA: John Wiley& Sons, Inc., New York, USA; 1993.

Downloads

Published

2017-04-06

How to Cite

Salleh, Z., Islam, M. M., & Epaarachchi, J. A. (2017). Analysis of Stress Concentration Factor for Tensile Characteristics of Syntactic Foam Using Finite Element Method. Journal of Research Updates in Polymer Science, 6(1), 21–32. https://doi.org/10.6000/1929-5995.2017.06.01.4

Issue

Section

Articles