Long-Term Performance of Electrodes Based on Vinyl Acetate Homo-Polymer Binder

Authors

  • Pier Paolo Prosini ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Centre, Via Anguillarese 301, 00123 Santa Maria di Galeria, Rome, Italy
  • Mariasole Di Carli ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Centre, Via Anguillarese 301, 00123 Santa Maria di Galeria, Rome, Italy
  • Livia Della Seta ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Centre, Via Anguillarese 301, 00123 Santa Maria di Galeria, Rome, Italy
  • Maria Carewska ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Centre, Via Anguillarese 301, 00123 Santa Maria di Galeria, Rome, Italy
  • Ivan Fuso Nerini VINAVIL SpA, via Valtellina, 63 - 20159 Milano, Italy

DOI:

https://doi.org/10.6000/1929-5995.2017.06.03.1

Keywords:

Poly vinyl acetate, triacetin, composite cathode, lithium battery, LiNi0.5Mn1.5O4

Abstract

In this work we propose the use of a hydro-dispersible polymer such as the poly vinyl acetate as a binder for the production of electrodes for lithium-ion batteries. To increase the film forming properties of the polymer the poly vinyl was added with triacetin that acts as a plasticizer. The electrochemical stability of the polymer was tested by a polarizing electrode, formed by mixing the polymer with carbon. Subsequently, an electrode tape was prepared by using LiNi0.5Mn1.5O4 as the active material and characterized by SEM, EDS and TGA. Lithium metal cells were assembled and tested to evaluate specific capacity, power and energy density at various discharge rates. The cycle life of the cell was evaluated by galvanostatic charge/discharge cycles. The tests showed that the electrodes prepared with PVA plasticized with triacetin have very good electrochemical performance in terms of capacity retention as a function of the discharge rate and the cycle number. Our work demonstrates that the use of triacetin to plasticize the PVA allows to increase the electrochemical stability of the electrode likely due to an improvement of the slurry filmability. The proposed method could represent a promising technology for the production of long-term performance lithium batteries.

References

Wood DL III, Li J, Daniel C. Prospects for reducing the processing cost of lithium ion batteries. J Power Sources 2015; 275: 234-242. https://doi.org/10.1016/j.jpowsour.2014.11.019 DOI: https://doi.org/10.1016/j.jpowsour.2014.11.019

Yabuuchi N, Kinoshita Y, Misaki K, Natsuyama T, Komaba S. Electrochemical Properties of LiCoO2 Electrodes with Latex Binders on High-Voltage Exposure. J Electrochem Soc 2015; 162: A538-A544. DOI: https://doi.org/10.1149/2.0151504jes

He M, Yuan L-X, Zhang W-X, Hu X-L, Huang Y-H. Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder. J Phys Chem C 2011; 115: 15703-15709. https://doi.org/10.1021/jp2043416 DOI: https://doi.org/10.1021/jp2043416

Mancini M, Nobili F, Tossici R, Mehrens MW, Marassi R. High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO2 anatase and water soluble binder carboxymethyl cellulose. J Power Sources 2011; 196: 9665-9671. https://doi.org/10.1016/j.jpowsour.2011.07.028 DOI: https://doi.org/10.1016/j.jpowsour.2011.07.028

Komaba S, Yabuuchi N, Ozeki T, Han Z-J, Shimomura K, Yui H, Katayama Y, Miura T. Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si-Graphite Composite Negative Electrodes in Li-Ion Batteries. J Phys Chem C 2012; 116: 1380-1389. https://doi.org/10.1021/jp204817h DOI: https://doi.org/10.1021/jp204817h

Sun M, Zhong H, Jiao S, Shao H, Zhang L. Investigation on Carboxymethyl Chitosan as New Water Soluble Binder for LiFePO4 Cathode in Li-Ion Batteries. Electrochim Acta 2014; 127: 239-244. https://doi.org/10.1016/j.electacta.2014.02.027 DOI: https://doi.org/10.1016/j.electacta.2014.02.027

Klamor S, Schröder M, Brunklaus G, Niehoff P, Berkemeier F, Schappacher FM, Winter M. On the interaction of water-soluble binders and nano silicon particles: alternative binder towards increased cycling stability at elevated temperatures. Phys Chem Chem Phys 2015; 175: 632-5641. https://doi.org/10.1039/C4CP04090B DOI: https://doi.org/10.1039/C4CP04090B

Qiu L, Shao Z, Wang D, Wang F, Wang J. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries. Carbohydr Polym 2014; 112: 532-538. https://doi.org/10.1016/j.carbpol.2014.06.034 DOI: https://doi.org/10.1016/j.carbpol.2014.06.034

Doberdo I, Löffler N, Laszczynski N, Cericola D, Penazzi N, Bodoardo S, Kim G-T, Passerini S. Enabling aqueous binders for lithium battery cathodes - Carbon coating of aluminum current collector. J Power Sources 2014; 248: 1000-1006. https://doi.org/10.1016/j.jpowsour.2013.10.039 DOI: https://doi.org/10.1016/j.jpowsour.2013.10.039

Soeda K, Yamagata M, Ishikawa M. Outstanding features of alginate-based gel electrolyte with ionic liquid for electric double layer capacitors. ECS Trans 2015; 64: 13-22. https://doi.org/10.1149/06418.0013ecst DOI: https://doi.org/10.1016/j.jpowsour.2015.01.144

Prosini PP, Cento C, Carewska M, Masci A. Poly vinyl acetate used as a binder for the fabrication of a LiFePO4-based composite cathode for lithium-ion batteries. Solid State Ionics 2015; 274: 34-39. https://doi.org/10.1016/j.ssi.2015.02.012 DOI: https://doi.org/10.1016/j.ssi.2015.02.012

Prosini PP, Carewska M, Masci A. A high voltage cathode prepared by using polyvinyl acetate as a binder. Solid State Ionics 2015; 274: 88-93. https://doi.org/10.1016/j.ssi.2015.03.008 DOI: https://doi.org/10.1016/j.ssi.2015.03.008

Santhanam R, Rambabu B. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 2010; 195: 5442-5451. https://doi.org/10.1016/j.jpowsour.2010.03.067 DOI: https://doi.org/10.1016/j.jpowsour.2010.03.067

Hasabnis A, Mahajani S. Entrainer-based reactive distillation for esterification of glycerol with acetic acid. Ind Eng Chem Res 2010; 49: 9058-9067. https://doi.org/10.1021/ie100937p DOI: https://doi.org/10.1021/ie100937p

Rahmat N, Abdullah AZ, Mohamed AR. Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: a critical review. Renew Sust Energ Rev 2010; 14: 987-1000. https://doi.org/10.1016/j.rser.2009.11.010 DOI: https://doi.org/10.1016/j.rser.2009.11.010

Zhu J, Li X, Huang C, Chen L, Li L. Plasticization effect of triacetin on structure and properties of starch ester film. Carbohyd Polym 2013; 94: 874-881. https://doi.org/10.1016/j.carbpol.2013.02.020 DOI: https://doi.org/10.1016/j.carbpol.2013.02.020

Appetecchi GB, Carewska M, Alessandrini F, Prosini PP, Passerini S. Characterization of PEO-based composite cathodes - I. Morphological, thermal, mechanical, and electrical properties. J Electrochem Soc 2000; 147: 451-459. https://doi.org/10.1149/1.1393217 DOI: https://doi.org/10.1149/1.1393217

Uyar T, Tonelli AE, Hacaloğlu J. Thermal degradation of polycarbonate, poly(vinyl acetate) and their blends. Polym Degrad Stab 2006; 91: 2960-2967. https://doi.org/10.1016/j.polymdegradstab.2006.08.028 DOI: https://doi.org/10.1016/j.polymdegradstab.2006.08.028

Yuca N, Zhao H, Song X, Dogdu MF, Yuan W, Fu Y, Battaglia VS, Xiao X, Liu GA. Systematic Investigation of Polymer Binder Flexibility on the Electrode Performance of Lithium-Ion Batteries. ACS Appl Mater Interfaces 2014; 6: 17111-17118. https://doi.org/10.1021/am504736y DOI: https://doi.org/10.1021/am504736y

Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn JR. Synthesis and Electrochemistry of LiNi xMn2 − xO4. J Electrochem Soc 1997; 144: 205-213. https://doi.org/10.1149/1.1837386 DOI: https://doi.org/10.1149/1.1837386

Sylla S, Sanchez J-Y, Armand M. Electrochemical study of linear and cross linked POE-based polymer electrolytes. Electrochim Acta 1992; 37: 1699-1701. https://doi.org/10.1016/0013-4686(92)80141-8 DOI: https://doi.org/10.1016/0013-4686(92)80141-8

Prosini PP. Modelling the voltage profile for LiFePO4. J Electrochem Soc 2005; 152: A1925- A1929. DOI: https://doi.org/10.1149/1.2006607

Fongy C, Gaillot AC, Jouanneau S, Guyomard D, Lestriez B. Ionic vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO4 Composite Electrodes. J Electrochem Soc 2010; 157: A885-A891. DOI: https://doi.org/10.1149/1.3432559

Downloads

Published

2017-10-04

How to Cite

Paolo Prosini, P., Di Carli, M., Della Seta, L., Carewska, M., & Fuso Nerini, I. (2017). Long-Term Performance of Electrodes Based on Vinyl Acetate Homo-Polymer Binder. Journal of Research Updates in Polymer Science, 6(3), 68–75. https://doi.org/10.6000/1929-5995.2017.06.03.1

Issue

Section

Articles