Thermal Stability and Rheological Properties of Polyethylene (PE)/Polyvinylchloride (PVC)/Wood Composites

Authors

  • Xing Wang College of Chemistry & Chemical Engineering, and the Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230039, Anhui, P.R. China
  • Bin Yang College of Chemistry & Chemical Engineering, and the Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230039, Anhui, P.R. China
  • Ru Xia College of Chemistry & Chemical Engineering, and the Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230039, Anhui, P.R. China
  • Ji-Bin Miao College of Chemistry & Chemical Engineering, and the Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230039, Anhui, P.R. China
  • Jia-Sheng Qian College of Chemistry & Chemical Engineering, and the Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230039, Anhui, P.R. China
  • Peng Chen College of Chemistry & Chemical Engineering, and the Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230039, Anhui, P.R. China
  • Shuang-Quan Deng College of Polymer Science & Engineering, and the State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, P.R. China

DOI:

https://doi.org/10.6000/1929-5995.2012.01.02.6

Keywords:

WPC, molecular characteristic, thermorheological complexity, intumescent flame retardant, char residue

Abstract

This paper investigated the thermorheological properties, thermal properties and flame retardant properties of wood-plastic composites (WPCs). With the addition of wood flour (WF), the rheological behavior became complexity. The critical frequency of shear-thinning phenomenon of the melt viscosity was shifted toward lower value. The temperature dependence of elastic modulus, loss modulus became more serious with the addition of WF. The Cole-Cole plot indicated the existence of complex multi-phase structure in the WPC melt. The CONE calorimetry results showed that ammonium polyphosphate (APP) had good flame retardancy through promoting the formation of the intumescent carbon layer. The present study will supply good insight into the optimization of WPC formulation.

References

Kumar V, Tyagi L, Sinha S. Wood flour-reinforced plastic composites: a review. Rev Chem Eng 2011; 27: 253-64. http://dx.doi.org/10.1515/REVCE.2011.006 DOI: https://doi.org/10.1515/REVCE.2011.006

Buyuksari U, Ayrilmis N, Akbulut T, et al. Compression wood as a source of reinforcing filler for thermoplastic composites. J Appl Polym Sci 2012; 123: 1740-45. http://dx.doi.org/10.1002/app.34627 DOI: https://doi.org/10.1002/app.34627

Agnantopoulou E, Tserki V, Marras S, et al. Development of biodegradable composites based on wood waste flour and thermoplastic starch. J Appl Polym Sci 2012; 126: 272-80. http://dx.doi.org/10.1002/app.35420 DOI: https://doi.org/10.1002/app.35420

Leao AL, Teixeira RM, Ferrao PC, et al. Production of reinforced composites with natural fibers for industrial applications - Extrusion and injection WPC. Mol Cryst Liq Cryst 2008; 484: 523-32. http://dx.doi.org/10.1080/15421400801904393 DOI: https://doi.org/10.1080/15421400801904393

Wang Y, Cao JZ, Zhu LZ, et al. Interfacial compatibility of wood flour/polypropylene composites by stress relaxation method. J Appl Polym Sci 2012; 126: 89-95. http://dx.doi.org/10.1002/app.36682 DOI: https://doi.org/10.1002/app.36682

Rodriguez-Llamazares S, Zuniga A, Castano J, et al. Comparative study of maleated polypropylene as a coupling agent for recycled low-density polyethylene/wood flour composites. J Appl Polym Sci 2011; 122: 1731-41. http://dx.doi.org/10.1002/app.34104 DOI: https://doi.org/10.1002/app.34104

Arino R, Boldizar A. Processing and mechanical properties of thermoplastic composites based on cellulose fibers and ethylene-acrylic acid copolymer. Polym Eng Sci 2012; 52: 1951-57. http://dx.doi.org/10.1002/pen.23134 DOI: https://doi.org/10.1002/pen.23134

Petchwattana N, Covavisaruch S, Chanakul S. Mechanical properties, thermal degradation and natural weathering of high density polyethylene/rice hull composites compatibilized with maleic anhydride grafted polyethylene. J Polym Res 2012; 19: 9921. http://dx.doi.org/10.1007/s10965-012-9921-6 DOI: https://doi.org/10.1007/s10965-012-9921-6

Leu SY, Yang TH, Lo SF, et al. Optimized material composition to improve the physical and mechanical properties of extruded wood-plastic composites. Constr Build Mater 2012; 29: 120-27. http://dx.doi.org/10.1016/j.conbuildmat.2011.09.013 DOI: https://doi.org/10.1016/j.conbuildmat.2011.09.013

Gwon JG, Lee SY, Chun SJ, et al. Physical and mechanical properties of wood-plastic composites hybridized with inorganic fillers. J Compos Mater 2012; 46: 301-309. http://dx.doi.org/10.1177/0021998311413690 DOI: https://doi.org/10.1177/0021998311413690

Ayrilmis N, Benthien JT, Thoemen H, et al. Effects of fire retardants on physical, mechanical, and fire properties of flat-pressed WPCs. Eur J Wood Wood Prod 2012; 70: 215-24. http://dx.doi.org/10.1007/s00107-011-0541-3 DOI: https://doi.org/10.1007/s00107-011-0541-3

Zhang ZX, Zhang J, Lu BX, et al. Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood-fiber composites. Compos Part B-Eng 2012; 43: 150-58. http://dx.doi.org/10.1016/j.compositesb.2011.06.020 DOI: https://doi.org/10.1016/j.compositesb.2011.06.020

Ndiaye D, Matuana LM, Morlat-Therias S, et al. Thermal and mechanical properties of polypropylene/wood-flour composites. J Appl Polym Sci 2011; 119: 3321-28. http://dx.doi.org/10.1002/app.32985 DOI: https://doi.org/10.1002/app.32985

Adhikary KB, Park CB, Islam MR, et al. Effects of lubricant content on extrusion processing and mechanical properties of wood flour-high-density polyethylene composites. J Thermoplast Compos 2011; 24: 155-71. http://dx.doi.org/10.1177/0892705710388590 DOI: https://doi.org/10.1177/0892705710388590

Bird RB, Carreau PJ. A nonlinear viscoelastic model for polymer solutions and melts. Chem Eng Sci 1968; 23: 427-34. http://dx.doi.org/10.1016/0009-2509(68)87018-6 DOI: https://doi.org/10.1016/0009-2509(68)87018-6

Huang SX, Lu CJ. Stress relaxation characteristic and extrudate swell of the IUPAC-LDPE melt. J Non-Newton Fluid 2006; 136: 147-56. http://dx.doi.org/10.1016/j.jnnfm.2006.03.013 DOI: https://doi.org/10.1016/j.jnnfm.2006.03.013

Arrhenius S. The viscosity of solutions. Biochem J 1917; 11: 112-33. DOI: https://doi.org/10.1042/bj0110112

Sanditov DS, Munkueva SB, Mashanov AA, et al. Temperature behavior of the free activation energy of viscous flow of glass-forming melts in a wide temperature range. Glass Phys Chem 2012; 38: 379-85. http://dx.doi.org/10.1134/S1087659612040141 DOI: https://doi.org/10.1134/S1087659612040141

Yang J, Liang JZ, Li FJ. Melt strength and extensional viscosity of low-density polyethylene and poly(butylene succinate) blends using a melt-spinning technique. J Macromol Sci B 2012; 51: 1715-30. http://dx.doi.org/10.1080/00222348.2012.657585 DOI: https://doi.org/10.1080/00222348.2012.657585

Hrabalova M, Gregorova A, Wimmer R, et al. Effect of wood flour loading and thermal annealing on viscoelastic properties of poly(lactic acid) composite films. J Appl Polym Sci 2010; 118: 1534-40. DOI: https://doi.org/10.1002/app.32509

Zhang T, Bai SL, Zhang YF, et al. Viscoelastic properties of wood materials characterized by nanoindentation experiments. Wood Sci Technol 2012; 46: 1003-16. http://dx.doi.org/10.1007/s00226-011-0458-3 DOI: https://doi.org/10.1007/s00226-011-0458-3

Utracki LA. Polymer alloys and blends-Thermodynamics and rheology. New York: Hanser Pub 1990.

Lisperguer J, Bustos X, Saravia Y. Thermal and mechanical properties of wood flour-polystyrene blends from postconsumer plastic waste. J Appl Polym Sci 2011; 119: 443-51. http://dx.doi.org/10.1002/app.32638 DOI: https://doi.org/10.1002/app.32638

Alfredsen G, Bader TK, Dibdiakova J, et al. Thermogravimetric analysis for wood decay characterization. Eur J Wood Wood Prod 2012; 70: 527-30. http://dx.doi.org/10.1007/s00107-011-0566-7 DOI: https://doi.org/10.1007/s00107-011-0566-7

Poletto M, Zattera AJ, Santana RMC. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci 2012; 126: 336-43. http://dx.doi.org/10.1002/app.36991 DOI: https://doi.org/10.1002/app.36991

Hamid MRY, Ahmad S. Effect of flame retardants on wood plastic composites-HDPE based. Compos Sci Technol 2011; 471: 640-45. DOI: https://doi.org/10.4028/www.scientific.net/KEM.471-472.640

Stark NM, White RH, Mueller SA. Evaluation of various fire retardants for use in wood flour-polyethylene composites. Polym Degrad Stabil 2010; 95: 1903-10. http://dx.doi.org/10.1016/j.polymdegradstab.2010.04.014 DOI: https://doi.org/10.1016/j.polymdegradstab.2010.04.014

Seefeldt H, Braun U. A new flame retardant for wood materials tested in wood-plastic composites. Macromol Mater Eng 2012; 297: 814-20. http://dx.doi.org/10.1002/mame.201100382 DOI: https://doi.org/10.1002/mame.201100382

Downloads

Published

2013-01-10

How to Cite

Wang, X., Yang, B., Xia, R., Miao, J.-B., Qian, J.-S., Chen, P., & Deng, S.-Q. (2013). Thermal Stability and Rheological Properties of Polyethylene (PE)/Polyvinylchloride (PVC)/Wood Composites. Journal of Research Updates in Polymer Science, 1(2), 101–109. https://doi.org/10.6000/1929-5995.2012.01.02.6

Issue

Section

Articles