The Effect of Aluminium Surface Treatments on the Bonding Properties of Silica-Modified Epoxy Adhesive Joints: A Statistical Approach

Authors

  • Francisco M. Dos Santos Centre for Innovation and Technology in Composite Materials – CITeC, Department of Mechanical Engineering, Federal University of São João Del-Rei, Brazil
  • Lívia A. de Oliveira Centre for Innovation and Technology in Composite Materials – CITe C, Department of Mechanical Engineering, Federal University of São João Del-Rei, Brazil; Department of Natural Sciences, Federal University of São João Del-Rei, Brazil
  • Alysson H. S. Bueno Centre for Innovation and Technology in Composite Materials – CITe C, Department of Mechanical Engineering, Federal University of São João Del-Rei, Brazil; Department of Natural Sciences, Federal University of São João Del-Rei, Brazil
  • Rodrigo T. S. Freire Centre for Innovation and Technology in Composite Materials – CITe C, Department of Mechanical Engineering, Federal University of São João Del-Rei, Brazil; Department of Natural Sciences, Federal University of São João Del-Rei, Brazil
  • Leandro José da Silva Centre for Innovation and Technology in Composite Materials – CITe C, Department of Mechanical Engineering, Federal University of São João Del-Rei, Brazil; Department of Natural Sciences, Federal University of São João Del-Rei, Brazil
  • Gilberto García del Pino
  • Tulio H. Panzera Centre for Innovation and Technology in Composite Materials – CITe C, Department of Mechanical Engineering, Federal University of São João Del-Rei, Brazil

DOI:

https://doi.org/10.6000/1929-5995.2021.10.3

Keywords:

Aluminium surface treatment, silica microparticles, apparent shear strength, adherent strength, full factorial design (DoE).

Abstract

A full factorial design is carried out to investigate the effects of different surface treatments, the inclusion of silica microparticles and the use of wash primer on the apparent shear strength and adherent strength of single-lap aluminium joints. Scanning electron microscopy, surface energy and roughness measurements are performed to characterise the aluminium surface. The results show that the use of wash primer decreases the apparent shear strength of the joints significantly. The cohesive failure of the primer is the main cause of the reduction in strength. On the other hand, the inclusion of 10 wt.% of silica microparticles in the adhesive layers increases the shear strength by 26%. Surfaces treated with NaOH for one minute, without using a wash primer, result in the most resistant joint. In contrast to the apparent shear strength, adherent strength is most effective when only degreasing is considered.

References

Sinmazçelik T, Avcu E, Bora MÖ, Çoban O. A review: Fibre metal laminates, background, bonding types and applied test methods. Mater Des 2011; 32: 3671-3685. https://doi.org/10.1016/j.matdes.2011.03.011 DOI: https://doi.org/10.1016/j.matdes.2011.03.011

Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des 2014; 56: 862-871. https://doi.org/10.1016/j.matdes.2013.12.002 DOI: https://doi.org/10.1016/j.matdes.2013.12.002

Prolongo SG, Ureña A. Effect of surface pre-treatment on the adhesive strength of epoxy–aluminium joints. Int J Adhes Adhes 2009; 29: 23-31. https://doi.org/10.1016/j.ijadhadh.2008.01.001 DOI: https://doi.org/10.1016/j.ijadhadh.2008.01.001

Saleema N, Sarkar DK, Paynter RW, Gallant D, Eskandarian M. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications. Appl Surf Sci 2012; 261: 742-748. https://doi.org/10.1016/j.apsusc.2012.08.091 DOI: https://doi.org/10.1016/j.apsusc.2012.08.091

Calik A. Effect of adherend shape on stress concentration reduction of adhesively bonded single lap joint. Eng Review 2016; 36: 29-43.

Zhan X, Chen J, Gu C, Peng Q, Chen J, Wei Y. Study on effects of pre-treatment and surface roughness on tensile-shear strength of 2060 Al-Li alloy adhesive joints. J Adhesion 2017; 93: 613-625. https://doi.org/10.1080/00218464.2015.1124765 DOI: https://doi.org/10.1080/00218464.2015.1124765

Cen B, Liu Y, Zeng Z, Wang J, Lu X, Zhu X. Mechanical behavior of novel GFRP foam sandwich adhesive joints. Compos B Eng 2017; 130: 1-10. https://doi.org/10.1016/j.compositesb.2017.07.034 DOI: https://doi.org/10.1016/j.compositesb.2017.07.034

Ramalho LDC, Campilho RDSG, Belinha J, da Silva LFM. Static strength prediction of adhesive joints: A review. Int J Adhes Adhes 2020; 96: 102451. https://doi.org/10.1016/j.ijadhadh.2019.102451 DOI: https://doi.org/10.1016/j.ijadhadh.2019.102451

Cui J, Wang S, Wang S, Chen S, Li G. Strength and failure analysis of adhesive single-lap joints under shear loading: Effects of surface morphologies and overlap zone parameters. J Manuf Process 2020; 56: 238-247. https://doi.org/10.1016/j.jmapro.2020.04.042 DOI: https://doi.org/10.1016/j.jmapro.2020.04.042

Marchione F, Munafo P. Experimental strength evaluation of glass/aluminum double-lap adhesive joints. J Build Eng 2020; 30: 101284. https://doi.org/10.1016/j.jobe.2020.101284 DOI: https://doi.org/10.1016/j.jobe.2020.101284

Adibeig MR, Vakili-Tahami F, Saeimi-Sadigh M-A. Polymers 2020; 195: 122434. https://doi.org/10.1016/j.polymer.2020.122434 DOI: https://doi.org/10.1016/j.polymer.2020.122434

Li W, Ghafoori E, Lu Y, Li S, Motavalli M. Analytical solution for stiffness prediction of bonded CFRP-to-steel double strap joints. Eng Struct 2018; 177: 190-197. https://doi.org/10.1016/j.engstruct.2018.09.024 DOI: https://doi.org/10.1016/j.engstruct.2018.09.024

Sun L, Tie Y, Hou Y, Lu X, Li C. Prediction of failure behavior of adhesively bonded CFRP scarf joints using a cohesive zone model. Eng Fract Mech 2020; 228: 106897. https://doi.org/10.1016/j.engfracmech.2020.106897 DOI: https://doi.org/10.1016/j.engfracmech.2020.106897

Xará JTS, Campilho RDSG. Strength estimation of hybrid single-L bonded joints by the eXtended Finite Element Method. Compos Struct 2018; 183: 397-406. https://doi.org/10.1016/j.compstruct.2017.04.009 DOI: https://doi.org/10.1016/j.compstruct.2017.04.009

Carneiro MAS, Campilho RDSG, Silva FJG. Experimental and numerical analysis of adhesively-bonded T joints under peel loads. Procedia Manufac 2017; 13: 51-58. https://doi.org/10.1016/j.promfg.2017.09.008 DOI: https://doi.org/10.1016/j.promfg.2017.09.008

Li Q, Batra RC, Graham I, Dillard DA. Examining T-peel specimen bond length effects: Experimental and numerical explorations of transitions to steady-state debonding. Inter J Solids Struct 2019; 15: 72-83. https://doi.org/10.1016/j.ijsolstr.2019.07.012 DOI: https://doi.org/10.1016/j.ijsolstr.2019.07.012

Domingues NRE, Campilho RDSG, Carbas RJC, da Silva LFM. Experimental and numerical failure analysis of aluminium/composite single-L joints. Int J Adhes Adhes 2016; 64: 86-96. https://doi.org/10.1016/j.ijadhadh.2015.10.011 DOI: https://doi.org/10.1016/j.ijadhadh.2015.10.011

Sorrentino L, Carrino L. 2024 aluminium alloy wettability and superficial cleaning improvement by air cold plasma treatment. J Mater Process Technol 2009; 209: 1400-1409. https://doi.org/10.1016/j.jmatprotec.2008.03.061 DOI: https://doi.org/10.1016/j.jmatprotec.2008.03.061

Oliveira PR, May M, Panzera TH, Scarpa F, Hiermaier S. Reinforced biobased adhesive for eco-friendly sandwich panels. Int J Adhes Adhes 2020; 98: 102550. https://doi.org/10.1016/j.ijadhadh.2020.102550 DOI: https://doi.org/10.1016/j.ijadhadh.2020.102550

Sapa Group (USA). Sapa Technology: Bonding of aluminum, 2016. [Online]. Available at: https://goo.gl/dNBSI0. [Accessed: 20-Jan-2021].

Klomjit P, Buchheit RG. Characterization of inhibitor storage and release from commercial primers. Prog Org Coat 2018; 114: 68-77. https://doi.org/10.1016/j.porgcoat.2017.10.005 DOI: https://doi.org/10.1016/j.porgcoat.2017.10.005

Meng Q, Wang CH, Saber N, Kuan HC, Dai J, Friedrich K, Ma J. Nanosilica-toughened polymer adhesives. J Mater 2014; 61: 75–86. https://doi.org/10.1016/j.matdes.2014.04.042 DOI: https://doi.org/10.1016/j.matdes.2014.04.042

ASTM D1002-10, Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal), 2010.

Xu Y, Li H, Shen Y, Liu S, Wang W, Tao J. Improvement of adhesion performance between aluminum alloy sheet and epoxy based on anodizing technique. Int J Adhes Adhes 2016; 70: 74–80. https://doi.org/10.1016/j.ijadhadh.2016.05.007 DOI: https://doi.org/10.1016/j.ijadhadh.2016.05.007

Santana PRT, Panzera TH, Freire RTS, Christoforo AL. Apparent shear strength of hybrid glass fibre reinforced composite joints. Polym Test 2017; 64: 307-312. https://doi.org/10.1016/j.polymertesting.2017.10.022 DOI: https://doi.org/10.1016/j.polymertesting.2017.10.022

Liu HY, Wang G, Mai YW, Cyclic fatigue crack propagation of nanoparticle modified epoxy, Compos Sci Technol 2012; 72: 1530-1538. https://doi.org/10.1016/j.compscitech.2012.05.025 DOI: https://doi.org/10.1016/j.compscitech.2012.05.025

Montgomery DC, Design and Analysis of Experiments, Eighth Edition. John Wiley & Sons, Inc., 2013.

Oosting R. Towards a new durable and environmentally compliant adhesive bonding process for aluminium alloys, Delft University of Technology, 1995.

Downloads

Published

2021-03-03

How to Cite

Santos, F. M. D. ., Oliveira, L. A. de ., Bueno, A. H. S. ., Freire, R. T. S. ., Silva, . L. J. da ., Pino, G. G. del ., & Panzera, T. H. . (2021). The Effect of Aluminium Surface Treatments on the Bonding Properties of Silica-Modified Epoxy Adhesive Joints: A Statistical Approach. Journal of Research Updates in Polymer Science, 10, 17–26. https://doi.org/10.6000/1929-5995.2021.10.3

Issue

Section

Articles