The Review on Electrospun Gelatin Fiber Scaffold
DOI:
https://doi.org/10.6000/1929-5995.2012.01.02.1Keywords:
Electrospinning, gelatin, scaffold, tissue engineering, membrane materials, nanofiberAbstract
The fabrication of the Guided Tissue Regeneration (GTR) membrane materials have become the key technique of the tissue engineering scaffold study. The cells adhere well on the fibers whose dimension is below their own so that the porous three dimension scaffold material can mimic the strueture of the natural extracellular matrix better and have the potential to be an ideal GTR membrane material. Gelatin, a kind of protein obtained from hydrolyzed and denatured animal skin, is a condensation polymer of a variety of amino acids and so it is a kind of bio-polymer with good water-solubility. Gelatin fiber mats with submicro and nanometer scale can simulate extracellular matrix structure of the human tissues and organs and can be used widely in the tissue engineering field because of their excellent bio-affinity. Electrospinning is a very attractive method for preparing polymer or composite nanofibers and so electrospinning technique was developed to prepare nanofibrous gelatin matrix. The electrospun of gelatin to fabricate the scaffold material has obtained more attention recently because of its biocompatibility, high surface area-to-volume ratio, degradability and less immunogenic property. The structure and performance of the electrospinning gelatin fiber mats which were manufactured by different solvents, electrospinning process, cross-linking process were reviewed. The properties and application of the two-component and multicomponent gelatin fiber mats were analyzed.
References
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005; 23: 47. http://dx.doi.org/10.1038/nbt1055 DOI: https://doi.org/10.1038/nbt1055
Chaitaworn N. Master Thesis, Faculty of Engineering, Chulalongkorn University 2009.
Ratanavaraporn J, Rangkupan RH, Jeeratawatchai H, Kanokpanont S, Damrongsakkul SP. Influences of physical and chemical cross-linking techniques on electrospun type A and B gelatin fiber mats. Int J Biol Macromol 2010; 47: 431-38. http://dx.doi.org/10.1016/j.ijbiomac.2010.06.008 DOI: https://doi.org/10.1016/j.ijbiomac.2010.06.008
Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ. Biomaterials 2006; 27: 4661-70. http://dx.doi.org/10.1016/j.biomaterials.2006.04.032 DOI: https://doi.org/10.1016/j.biomaterials.2006.04.032
Zimmermann KA, Leblanc JM, Sheets KT, Fox RW, Gatenholm P. Materials Sci Eng C 2011; 31: 43-49. http://dx.doi.org/10.1016/j.msec.2009.10.007 DOI: https://doi.org/10.1016/j.msec.2009.10.007
Will J, Melcher R, Treul C, Travitzky N, Kneser U, Polykandriotis E, et al. J Mater Sci Mater Med 2008; 19: 2781-90. http://dx.doi.org/10.1007/s10856-007-3346-5 DOI: https://doi.org/10.1007/s10856-007-3346-5
Gupta D, Venugopal J, Mitra S, Giri Dev VR, Ramakrishna S. Biomaterials 2009; 30: 2085-94. http://dx.doi.org/10.1016/j.biomaterials.2008.12.079 DOI: https://doi.org/10.1016/j.biomaterials.2008.12.079
Yang FY, Both SK, Yang X, Walboomers XF, Jansen JA. Acta Biomater 2009; 5: 3295-304. http://dx.doi.org/10.1016/j.actbio.2009.05.023
Jose MV, Thomas V, Johnson KT, Dean DR, Nyairo E. Acta Biomater 2009; 5: 305-15. http://dx.doi.org/10.1016/j.actbio.2008.07.019 DOI: https://doi.org/10.1016/j.actbio.2008.07.019
Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res 2010; 94A: 1312-20. DOI: https://doi.org/10.1002/jbm.a.32756
Choi MO, Kim YJ. Fabrication of gelatin/calcium phosphate composite nanofibrous membranes by biomimetic mineralization. Int J Biol Macromol 2012; 50: 1188-94. http://dx.doi.org/10.1016/j.ijbiomac.2012.04.001 DOI: https://doi.org/10.1016/j.ijbiomac.2012.04.001
Kim YJ. Polymer (Korea) 2008; 32: 409-14. DOI: https://doi.org/10.1353/apr.2008.0014
Kokubo T. Biomaterials 1991; 12: 155-63. http://dx.doi.org/10.1016/0142-9612(91)90194-F DOI: https://doi.org/10.1016/0142-9612(91)90194-F
Yang FY, Both SK, Yang X, Walboomers XF, Jansen JA. Acta Biomater 2009; 5: 3295-304. http://dx.doi.org/10.1016/j.actbio.2009.05.023 DOI: https://doi.org/10.1016/j.actbio.2009.05.023
Inoguchi H, Keun K, Inoue E, Takamizawa K, Maehara Y, Matsuda T. Biomaterials 2006; 27: 1470-78. http://dx.doi.org/10.1016/j.biomaterials.2005.08.029 DOI: https://doi.org/10.1016/j.biomaterials.2005.08.029
He W, Ma Z, Yong T, Teo WE, Ramakrishna S. Biomaterials 2005; 26: 7606-15. http://dx.doi.org/10.1016/j.biomaterials.2005.05.049 DOI: https://doi.org/10.1016/j.biomaterials.2005.05.049
Puskas JE, Chen Y. Biomacromolecules 2004; 5(4): 1141-54. http://dx.doi.org/10.1021/bm034513k DOI: https://doi.org/10.1021/bm034513k
Sayers RD, Raptis S, Berce M, Miller JH. Br J Surg 1998; 85: 934-38. http://dx.doi.org/10.1046/j.1365-2168.1998.00765.x DOI: https://doi.org/10.1046/j.1365-2168.1998.00765.x
Nerem RM, Seliktar D. Annu Re V Biomed Eng 2001; 3: 225-43. http://dx.doi.org/10.1146/annurev.bioeng.3.1.225 DOI: https://doi.org/10.1146/annurev.bioeng.3.1.225
Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R. Science 1999; 284: 489-93. http://dx.doi.org/10.1126/science.284.5413.489 DOI: https://doi.org/10.1126/science.284.5413.489
Mikos AG, Temenoff JS. J Biotechnol 2000; 3: 114-19. DOI: https://doi.org/10.2225/vol3-issue2-fulltext-5
Yang S, Leong KF, Du Z, Chua CK. Tissue Eng 2001; 7: 679-89. http://dx.doi.org/10.1089/107632701753337645 DOI: https://doi.org/10.1089/107632701753337645
Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Trends Biotechnol 2003; 21: 157-61. http://dx.doi.org/10.1016/S0167-7799(03)00033-7 DOI: https://doi.org/10.1016/S0167-7799(03)00033-7
Kriegel C, Kit KM, McClements D. J Polymer 2009; 50: 189-200. http://dx.doi.org/10.1016/j.polymer.2008.09.041 DOI: https://doi.org/10.1016/j.polymer.2008.09.041
Kowalczyk T, Nowicka A, Elbaum D, Kowalewski TA. Biomacromolecules 2008; 9(7): 2087-90. http://dx.doi.org/10.1021/bm800421s DOI: https://doi.org/10.1021/bm800421s
Pham QP, Sharma U, Mikos AG. Biomacromolecules 2006; 7(10): 2796-805. http://dx.doi.org/10.1021/bm060680j DOI: https://doi.org/10.1021/bm060680j
Montero RB, Vial X, Nguyen DT, Farhand S, Reardon M, Pham SM, et al. bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis. Acta Biomater 2012; (8): 1778-91. http://dx.doi.org/10.1016/j.actbio.2011.12.008 DOI: https://doi.org/10.1016/j.actbio.2011.12.008
Wang SD, Zhang YZ, Yin GB, Wang HG, Dong ZH. Electrospun Polylactide /Silk Fibroin-Gelatin Composite Tubular Scaffolds for Small-Diameter Tissue Engineering Blood Vessels. J Appl Polym Sci 2009; 113: 2675-82. http://dx.doi.org/10.1002/app.30346 DOI: https://doi.org/10.1002/app.30346
Han JJ, Lazarovici P, Pomerantz C, Chen XS, Wei Y, Lelkes PI. Co-Electrospun Blends of PLGA, Gelatin, and Elastin as Potential Nonthrombogenic Scaffolds for Vascular Tissue Engineering. Biomacromolecules 2011; 12: 399-408. http://dx.doi.org/10.1021/bm101149r DOI: https://doi.org/10.1021/bm101149r
Wang HY, Feng YK, Behl M, Lendlein A, Zhao HY , Xiao RF, et al. Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels. Front Chem Sci Eng 2011; 5(3): 392-400. http://dx.doi.org/10.1007/s11705-011-1202-0 DOI: https://doi.org/10.1007/s11705-011-1202-0
Teo WE, He W, Ramakrishna S. Biotechnol J 2006; 1: 918-29. http://dx.doi.org/10.1002/biot.200600044 DOI: https://doi.org/10.1002/biot.200600044
Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Biomed Mater 2008; 3: 1-15. http://dx.doi.org/10.1088/1748-6041/3/3/034002 DOI: https://doi.org/10.1088/1748-6041/3/3/034002
Yang F, Murugan R, Wang S, Ramakrishna S. Biomaterials 2005; 26: 2603-10. http://dx.doi.org/10.1016/j.biomaterials.2004.06.051 DOI: https://doi.org/10.1016/j.biomaterials.2004.06.051
Yang F, Xu CY, Koktaki M, Wang S, Ramakrishna SJ. Biomater Sci Polym Ed 2004; 15: 1483-97. http://dx.doi.org/10.1163/1568562042459733 DOI: https://doi.org/10.1163/1568562042459733
Prabhakaran MP, Venugopal J, Chyan TT, Hai LB, Chan CK, Yu-Tang AL, Ramakrishna S. Tissue Eng Part A 2008; 14: 1-11. http://dx.doi.org/10.1089/ten.tea.2007.0393 DOI: https://doi.org/10.1089/ten.tea.2007.0393
Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Biomaterials 2008; 29: 4532-39. http://dx.doi.org/10.1016/j.biomaterials.2008.08.007
Mobarakeh LG, Prabhakaran MP, Morshed M, Esfahani MHN, Ramakrishna S. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008; (29): 4532-39. http://dx.doi.org/10.1016/j.biomaterials.2008.08.007 DOI: https://doi.org/10.1016/j.biomaterials.2008.08.007
Yannas IV, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res 1980; 14: 65-81. http://dx.doi.org/10.1002/jbm.820140108 DOI: https://doi.org/10.1002/jbm.820140108
Heimbach D, Luterman A, Burke JF, Cram A, Herndon D, Hunt J. Artificial dermis for major burns: A multi-center randomized clinical trial. Surgery 1988; 208: 313-20. http://dx.doi.org/10.1001/jama.1989.03430150093032 DOI: https://doi.org/10.1097/00000658-198809000-00008
Hansbrough JF, Boyce ST, Cooper ML, Foreman TJ. Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen-glycosaminoglycan substrate. JAMA 1989; 262: 2125-30. DOI: https://doi.org/10.1001/jama.262.15.2125
Boyce ST, Kagan RJ, Greenhalgh DG, Warner P, Yakuboff KP, Palmieri T, et al. Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns. J Trauma 2006; 60: 821-29. DOI: https://doi.org/10.1097/01253092-200603001-00021
Erdag G, Sheridan R. Fibroblasts improve performance of cultured composite skin substitutes on athymic mice. Burns 2004; 30: 322-28. http://dx.doi.org/10.1016/j.burns.2003.12.007 DOI: https://doi.org/10.1016/j.burns.2003.12.007
Freyman TJ, Yannas IV, Yokoo R, Gibson LJ. Fibroblasts con-traction of a collagen-GAG matrix. Biomaterials 2001; 22: 2883-91. http://dx.doi.org/10.1016/S0142-9612(01)00034-5 DOI: https://doi.org/10.1016/S0142-9612(01)00034-5
O’Brien F, Harley B, Yannas I, Gibson L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 2004; 25: 1077-86. http://dx.doi.org/10.1016/S0142-9612(03)00630-6 DOI: https://doi.org/10.1016/S0142-9612(03)00630-6
Zhang Y, Venugopal J, Huang Z-M, Lim C, Ramakrishna S. Crosslinking of the electrospun gelatin nanofibers. Polymer 2006; 47: 2911-17. http://dx.doi.org/10.1016/j.polymer.2006.02.046 DOI: https://doi.org/10.1016/j.polymer.2006.02.046
Ulubayram K, Cakar A, Korkusuz P, Ertan C, Hasirci N. EGF containing gelatin-based wound dressings. Biomaterials 2001; 22: 1345-56. http://dx.doi.org/10.1016/S0142-9612(00)00287-8 DOI: https://doi.org/10.1016/S0142-9612(00)00287-8
Neumann P, Zur B, Ehernreich Y. Gelatin-based sprayable foam as a skin substitute. J Biomed Mater Res 1981; 15: 9-18. http://dx.doi.org/10.1002/jbm.820150105 DOI: https://doi.org/10.1002/jbm.820150105
Wang T-W, Wu H-C, Huang Y-C, Sun J-S, Lin F-H. Biomimetic bilayered gelatin-chondroitin sulfate-hyaluronic acid biopolymer as a scaffold for skin equivalent tissue engineering. Artif Organs 2006; 30: 141-49. http://dx.doi.org/10.1111/j.1525-1594.2006.00200.x DOI: https://doi.org/10.1111/j.1525-1594.2006.00200.x
Powell HM, Boyce ST. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. Wiley Periodicals, Inc. 2007. DOI: https://doi.org/10.1002/jbm.a.31498
J Mater Sci Mater Med 2012; 23: 931-41. http://dx.doi.org/10.1007/s10856-012-4577-7 DOI: https://doi.org/10.1007/s10856-012-4577-7
Jafari J, Emami SH, Samadikuchaksaraei A, Bahar MA, Gorjipour F. Electrospun chitosan- gelatin nanofiberous scaffold: Fabrication and in vitro evaluation. Bio-Med Mater Eng 2011; (21): 99-112. DOI: https://doi.org/10.3233/BME-2011-0660
Lemmouchi Y, Schacht E. Preparation and in vitro evaluation of biodegradable poly(ε-caprolactone-co-D,L lactide)(X-Y) devices containing trypanocidal drugs. J Control Release 1997; 45(2): 27-33. DOI: https://doi.org/10.1016/S0168-3659(96)01569-6
Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Nanobioengineered electrospun composite nanofibres and osteoblasts for bone regeneration. Artif Organs 2008; 32: 388-97. http://dx.doi.org/10.1111/j.1525-1594.2008.00557.x
Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 2006; 1143-56. DOI: https://doi.org/10.22203/eCM.v011a06
Chandrasekaran AR, Venugopal J, Sundarrajan S, Ramakrishna S. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomed Mater 2011; 6: 015001. http://dx.doi.org/10.1088/1748-6041/6/1/015001 DOI: https://doi.org/10.1088/1748-6041/6/1/015001
Lee J, Tae G, Kim YH, Park IS, Sang-Heon K, Kim SH. The effect of gelatin incorporation into electrospun poly(l-lactide-co-caprolactone) fibres on mechanical properties and cytocompatibility. Biomaterials 2008; 29: 1872-79. http://dx.doi.org/10.1016/j.biomaterials.2007.12.029 DOI: https://doi.org/10.1016/j.biomaterials.2007.12.029
Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fibre orientation. Tissue Eng 2007; 13: 1845-66. http://dx.doi.org/10.1089/ten.2006.0078 DOI: https://doi.org/10.1089/ten.2006.0078
Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Nanobioengineered electrospun composite nanofibres and osteoblasts for bone regeneration. Artif Organs 2008; 32: 388-97. http://dx.doi.org/10.1111/j.1525-1594.2008.00557.x DOI: https://doi.org/10.1111/j.1525-1594.2008.00557.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 Jianchao Zhan, Ping Lan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .