Nanostructured Triblock Copolymers with Chemically Complementary Components and Their Ionic Conductivity
DOI:
https://doi.org/10.6000/1929-5995.2012.01.02.4Keywords:
Block copolymer, structure, intramolecular polycomplex, ionic conductivity, electrochemical devicesAbstract
A series of structural and electrochemical studies of the triblock copolymers (TBCs) based on poly(ethylene oxide) (Mn = 14 and 35 kDa) and polyacrylamide (PAAm-b-PEO-b-PAAm), which formed the intramolecular polycomplexes, were carried out using nuclear magnetic resonance, differential scanning calorimetry, wide-angle and small-angle X-ray scattering, and impedance spectroscopy. The combination of the amorphous mass-fractal-organized structure of the copolymers with high level of the ionic conductivity of pure TBCs and their compositions with the couple KI/I2 and LiPF6 salt was established. Possible reasons for the effects in the context of applications of TBC compositions in solar cells and lithium batteries are discussed.
References
Vincent CA, Scrosati B. Modern batteries. An introduction to electrochemical power sources. 2nd ed. London: Arnold 1993.
Lightfoot P, Metha MA, Brace PG. Structure of the polymer electrolyte poly(ethylene oxide) : 3LiCF3SO3. Science 1993; 262: 883-5. http://dx.doi.org/10.1126/science.262.5135.883 DOI: https://doi.org/10.1126/science.262.5135.883
Gray FM. Polymer electrolytes. London: The Royal Society of chemistry monographs, Cambridge 1997.
Nogueira AF, Durrant JR, De Paoli M-A. Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte. Adv Mater 2001; 13: 826-30. http://dx.doi.org/10.1002/1521-4095(200106)13:11<826::AID-ADMA826>3.0.CO;2-L DOI: https://doi.org/10.1002/1521-4095(200106)13:11<826::AID-ADMA826>3.0.CO;2-L
Stergiopoulos T, Arabatzis IM, Katsaros G, Falaras P. Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells. Nano Lett 2002; 2: 1259-61. http://dx.doi.org/10.1021/nl025798u DOI: https://doi.org/10.1021/nl025798u
Kang MS, Kim JH, Kim YJ, Won J, Park N-G, Kang YS. Dye-sensitized solar cells based on composite solid polymer electrolytes. Chem Commun 2005; 889-91. http://dx.doi.org/10.1039/b412129p DOI: https://doi.org/10.1039/b412129p
Stephan AM, Nahm KS. Review on composite polymer electrolytes for lithium batteries. Polymer 2006; 47: 5952-64. http://dx.doi.org/10.1016/j.polymer.2006.05.069 DOI: https://doi.org/10.1016/j.polymer.2006.05.069
Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chem Rev 2010; 110: 6595-63. http://dx.doi.org/10.1021/cr900356p DOI: https://doi.org/10.1021/cr900356p
Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources 2010; 195: 2419-30. http://dx.doi.org/10.1016/j.jpowsour.2009.11.048 DOI: https://doi.org/10.1016/j.jpowsour.2009.11.048
Gupta RK, Rhee H-W. Highly conductive redox-couple solid polymer electrolyte system: blend-KI-I2 for dye-sensitized solar cells. Adv OptoElectron 2011; 2011: ID 102932. DOI: https://doi.org/10.1155/2011/102932
Singh PK, Nagarale RK, Pandey SP, Rhee HW, Bhattacharya B. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes. Adv Nat Sci Nanosci Nanotechnol 2011; 2: 023002. http://dx.doi.org/10.1088/2043-6262/2/2/023002 DOI: https://doi.org/10.1088/2043-6262/2/2/023002
Kim YJ, Kim JH, Kang M-S, Lee MJ, Won J, Lee JC, et al. Supramolecular electrolytes for use in highly efficient dye-sensitized solar cells. Adv Mater 2004; 16: 1753-7. http://dx.doi.org/10.1002/adma.200306664 DOI: https://doi.org/10.1002/adma.200306664
Kim JH, Kang M-S, Kim YJ, Won J, Park N-G, Kang YS. Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles. Chem Commun 2004; 1662-3. http://dx.doi.org/10.1039/b405215c DOI: https://doi.org/10.1039/b405215c
Mohan VM, Murakami K. Dye sensitized solar cell with carbon doped (PAN/PEG) polymer quasi-solid gel electrolyte. J Adv Res Phys 2011; 2: 021112 (5pp).
Appetecchi GB, Scaccia S, Passerini S. Investigation on the stability of the lithium polymer electrolyte interface. J Electrochem Soc 2000; 147: 4448-52. http://dx.doi.org/10.1149/1.1394084 DOI: https://doi.org/10.1149/1.1394084
Appetecchi GB, Henderson W, Villano P, Berrettoni M, Passerini S. PEO-LiN(SO2CF2CF3)2 polymer electrolytes. 1. XRD, DSC, and ionic conductivity characterization. J Electrochem Soc 2001; 148: A1171-8. http://dx.doi.org/10.1149/1.1403728 DOI: https://doi.org/10.1149/1.1403728
Geiculescu OE, Yang J, Blau H, Bailey-Walsh R, Creager SE, Pennington WT, DesMarteau DD. Solid polymer electrolytes from dilithium salts based on new bis[(perf luoroalkyl)sulfonyl]diimide dianions. Preparation and electrical characterization. Solid State Ionics 2002; 148: 173-83. http://dx.doi.org/10.1016/S0167-2738(02)00111-X DOI: https://doi.org/10.1016/S0167-2738(02)00111-X
Kang M-S, Kim YJ, Won J, Kang YS. Roles of terminal groups of oligomer electrolytes in determining photovoltaic performances of dye-sensitized solar cells. Chem Commun 2005; 2686-8. http://dx.doi.org/10.1039/b418061e DOI: https://doi.org/10.1039/b418061e
Rajendran S, Kannan R, Mahendran O. Ionic conductivity studies in poly(methylmethacrylate)-poly(ethylene oxyde) hybrid polymer electrolytes with lithium salts. J Power Sources 2001; 96: 406-10. http://dx.doi.org/10.1016/S0378-7753(00)00573-5 DOI: https://doi.org/10.1016/S0378-7753(00)00573-5
Kim J, Park SJ, Kim S. Electrochemical properties of composite electrolytes based on poly(ethylene oxide)/poly(ethylene imine) containing the inorganic silica fillers. J Nanosci Nanotechnol 2012; 12: 685-9. http://dx.doi.org/10.1166/jnn.2012.5345 DOI: https://doi.org/10.1166/jnn.2012.5345
Yang Y, Zhou C-H, Xu S, Hu H, Chen B-L, Zhang J, et al. Improved stability of quasi-solid-state dye-sensitized solar cell based on poly (ethylene oxide)–poly (vinylidene fluoride) polymer-blend electrolytes. J Power Sources 2008; 185: 1492-8. http://dx.doi.org/10.1016/j.jpowsour.2008.09.034 DOI: https://doi.org/10.1016/j.jpowsour.2008.09.034
Ahmad A, Rahman MYA, Suait MS. Morphological, infrared, and ionic conductivity studies of poly(ethylene oxide)-49% poly(methyl methacrylate) grafted natural rubber-lithium perchlorate salt based solid polymer electrolytes. J Appl Polym Sci 2012; 124: 4222-9. http://dx.doi.org/10.1002/app.35403 DOI: https://doi.org/10.1002/app.35403
Katsaros G, Stergiopoulos T, Arabatzis IM, Falaras P. A solvent-free composite polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells. J Photochem Photobiol A: Chem 2002; 149: 191-8. http://dx.doi.org/10.1016/S1010-6030(02)00027-8 DOI: https://doi.org/10.1016/S1010-6030(02)00027-8
Zhang C, Wang M, Zhou X, Lin Y, Fang S, Li X, et al. Optimization of polymer electrolytes for quasi-solid state dye-sensitized solar cells. Chinese Sci Bull 2004; 49: 2033-6. http://dx.doi.org/10.1360/03wb0227 DOI: https://doi.org/10.1360/03wb0227
Jung S, Kim DW, Lee SD, Cheong M, Nguyen DQ, Cho BW, et al. Fillers for Solid-State Polymer Electrolytes: Highlight. Bull Korean Chem Soc 2009; 30: 2355-61. http://dx.doi.org/10.5012/bkcs.2009.30.10.2355 DOI: https://doi.org/10.5012/bkcs.2009.30.10.2355
Zhang J, Huang X, Wei H, Fu J, Liu W, Tang X. Preparation and electrochemical behaviors of composite solid polymer electrolytes based on polyethylene oxide with active inorganic–organic hybrid polyphosphazene nanotubes as fillers. New J Chem 2011; 35: 614-21. http://dx.doi.org/10.1039/c0nj00717j DOI: https://doi.org/10.1039/c0nj00717j
Tang C, Hackenberg K, Fu Q, Ajayan PM, Ardebi H. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 2012; 12: 1152-6. http://dx.doi.org/10.1021/nl202692y DOI: https://doi.org/10.1021/nl202692y
Suriani I, Mohd RJ. Thermolysis and conductivity studies of poly(ethylene oxide) (PEO) based polymer electrolytes doped with carbon nanotubes. Int J Electrochem Sci 2012; 7: 2596-615. DOI: https://doi.org/10.1016/S1452-3981(23)13905-8
Bandara T, Dissanayake M, Ileperuma O, Varaprathan K, Vignarooban K, Mellander B-E. Polyethyleneoxide (PEO)-
based, anion conducting solid polymer electrolyte for PEC solar cells. J Solid State Electrochem 2008; 12: 913-7. http://dx.doi.org/10.1007/s10008-007-0461-7 DOI: https://doi.org/10.1007/s10008-007-0461-7
Xie H-Q, Xie D. Molecular design, synthesis and properties of block and graft copolymers containing polyoxyethylene segments. Prog Polym Sci 1999; 24: 275-13. http://dx.doi.org/10.1016/S0079-6700(98)00020-3 DOI: https://doi.org/10.1016/S0079-6700(98)00020-3
Zuo X, Liu X-M, Cai F, Yang H, Shen X-D, Li G. A novel all-solid electrolyte based on a co-polymer of poly-(methoxy/hexadecal-poly(ethylene glycol) methacrylate) for lithium-ion cell. J Mater Chem 2012; 22: 22265-71. http://dx.doi.org/10.1039/c2jm34270g DOI: https://doi.org/10.1039/c2jm34270g
Ghosh A, Kofinas P. PEO based block copolymer as solid state lithium battery electrolyte. ECS Transactions 2008; 11: 131-7. http://dx.doi.org/10.1149/1.2938916 DOI: https://doi.org/10.1149/1.2938916
Niitani T, Shimada M, Kawamura K, Dokko K, Rho Y-H, Kanamura K. Synthesis of Li+ ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure. Electrochem Solid-State Lett 2005; 8: A385-8. http://dx.doi.org/10.1149/1.1940491 DOI: https://doi.org/10.1149/1.1940491
Ogata N. Ion-conducting polymers. J Macromol Sci Part C: Polym Rev 2002; C42: 399-39. http://dx.doi.org/10.1081/MC-120006454 DOI: https://doi.org/10.1081/MC-120006454
Uchiyama R, Kusagawa K, Hanai K, Imanishi N, Hirano A, Takeda Y. Development of dry polymer electrolyte based on polyethylene oxide with co-bridging agent crosslinked by electron beam. Solid State Ionics 2009; 180: 205-11. http://dx.doi.org/10.1016/j.ssi.2008.11.015 DOI: https://doi.org/10.1016/j.ssi.2008.11.015
Kang M-S, Kim JH, Won J, Kang YS. Dye-sensitized solar cells based on crosslinked poly(ethylene glycol) electrolytes. J Photochem Photobiol A: Chem 2006; 183: 15-21. http://dx.doi.org/10.1016/j.jphotochem.2006.02.013 DOI: https://doi.org/10.1016/j.jphotochem.2006.02.013
Xie H-Q, Zhou PG. Multicomponent polymer materials. In: Paul DR, Sperling CH, editors. Adv Chem Ser No 211. Washington DC: ACS 1986.
Privalko VP, Novikov VV. The science of heterogeneous polymers. Structure and thermophysical properties. Chichester etc.: John Wiley & Sons 1995.
Tsuchida E, Ohno H, Tsunemi K, Kobayashi N. Lithium ionic conduction in poly(methacrylic acid)-poly(ethylene oxide) complex containing lithium perchlorate. Solid State Ionics 1983; 11: 227-33. http://dx.doi.org/10.1016/0167-2738(83)90028-0 DOI: https://doi.org/10.1016/0167-2738(83)90028-0
An SY, Jeong IC, Won MS, Jeong ED, Shim Y-B. Effect of additives in PEO/PAA/PMAA composite solid polymer electrolytes on the ionic conductivity and Li ion battery performance. J Appl Electrochem 2009; 39: 1573-8. http://dx.doi.org/10.1007/s10800-009-9843-0 DOI: https://doi.org/10.1007/s10800-009-9843-0
DeLongchamp DM, Hammond PT. Highly ion conductive poly(ethylene oxide)-based solid polymer electrolytes from hydrogen bonding layer-by-layer assembly. Langmuir 2004; 20: 5403-11. http://dx.doi.org/10.1021/la049777m DOI: https://doi.org/10.1021/la049777m
Jiang M, Li M, Xiang M, Zhou H. Interpolymer complexation and miscibility enhancement by hydrogen bonding. Adv Polym Sci 1999; 146: 121-96. http://dx.doi.org/10.1007/3-540-49424-3_3 DOI: https://doi.org/10.1007/3-540-49424-3_3
Dubin P, Bock J, Davis R, Schulz D, Thies C, Eds. Macromolecular complexes in chemistry and biology. Berlin-Heidelberg-New York: Springer-Verlag 1994. http://dx.doi.org/10.1007/978-3-642-78469-9 DOI: https://doi.org/10.1007/978-3-642-78469-9
Izumrudov VA, Zezin AB, Kabanov VA. Equilibria in interpolyelectrolyte reactions and the phenomenon of molecular "recognition" in solutions of interpolyelectrolyte complexes. Russ Chem Rev 1991; 60: 792-806. http://dx.doi.org/10.1070/RC1991v060n07ABEH001111 DOI: https://doi.org/10.1070/RC1991v060n07ABEH001111
Zheltonozhskaya T, Permyakova N, Momot L. Intramolecular polycomplexes in block and graft copolymers. In: Khutoryanskiy VV, Staikos G, editors. Hydrogen-bonded interpolymer complexes: formation, structure and applications. Ch. 5. New Jersey-London-Singapore etc.: World Scientific Publ. Corp 2009; pp. 85-154. DOI: https://doi.org/10.1142/9789812709776_0005
Holappa S, Kantonen L, Winnik FM, Tenhu H. Self-complexation of poly(ethylene oxide)-block-poly(methacrylic acid) studied by fluorescence spectroscopy. Macromolecules 2004; 37: 7008-18. http://dx.doi.org/10.1021/ma049153n DOI: https://doi.org/10.1021/ma049153n
Fedorchuk SV, Zheltonozhskaya TB, Permyakova NM, Gomza YP, Nessin SD, Klepko VV. Structural peculiarities of triblock copolymers containing poly(ethylene oxide) and polyacrylamide. Mol Cryst Liq Cryst 2008; 497: 268-81. http://dx.doi.org/10.1080/15421400802463092 DOI: https://doi.org/10.1080/15421400802463092
Baron MH, Fillaux F. Vibrational spectra and structure of N-methylacetamide in some solid complexes with neutral salts. Can J Chem 1985; 63: 1473-6. http://dx.doi.org/10.1139/v85-252 DOI: https://doi.org/10.1139/v85-252
Lipatov YuS, Shilov VV, Gomza YuP, Kruglyak NE. X-Ray diffraction methods of analysis of polymer systems. Kyiv: Nauk. Dumka, UA 1982.
Macdonald JR. Impedance spectroscopy. Ann Biomed Eng 1992; 20: 289-305. http://dx.doi.org/10.1007/BF02368532 DOI: https://doi.org/10.1007/BF02368532
Permyakova NM, Zheltonozhskaya TB, Shilov VV, Zagdanskaya NE, Kunitskaya LR, Syromyatnikov VG, et al. Structure of triblock-copolymers based on poly(ethylene oxide) and poly(acrylamide) with central blocks of varying lengths. Theor Exper Chem 2005; 41: 382-8. http://dx.doi.org/10.1007/s11237-006-0007-6 DOI: https://doi.org/10.1007/s11237-006-0007-6
Privalko VP, Lobodina AP. Glass transition in the lower homologues of poly(ethylene oxide). Polym J 1974; 10: 1033-8. DOI: https://doi.org/10.1016/0014-3057(74)90066-4
Feldstein MM. Peculiarities of glass transition temperature relation to the composition of poly(N-vinyl pyrrolidone) blends with short chain poly(ethylene glycol). Polymer 2001; 42: 7719-26. http://dx.doi.org/10.1016/S0032-3861(01)00225-7 DOI: https://doi.org/10.1016/S0032-3861(01)00225-7
Shpak AP, Shilov VV, Shilova OA, Kunitskiy YuA. Diagnostics of nanosystems. Multilevel fractal structures (Part II). Kyiv: Nauk. Dumka, UA 2004.
Zhang F, Ilavski J. Ultra-small-angle X-ray scattering of polymers. J Macromol Sci Part C: Polym Rev 2010; 50: 59-90. DOI: https://doi.org/10.1080/15583720903503486
Beaucage G. Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Crystallography 1996; 29: 134-46. http://dx.doi.org/10.1107/S0021889895011605 DOI: https://doi.org/10.1107/S0021889895011605
Barsoukov E, Macdonald JR. Impedance spectroscopy. Theory, experiment and applications. 2nd ed. New York: Wiley & Sons 2005. http://dx.doi.org/10.1002/0471716243 DOI: https://doi.org/10.1002/0471716243
Bruce PG, Ed. Solid State Electrochemistry. Cambridge: Cambridge Univ Press 1995.
Sreekanth T, Jaipal Reddy M, Subba Rao UV. Polymer electrolyte system based on (PEO + KBrO3) - its application as an electrochemical cell. J Power Sources 2001; 93: 268-72. http://dx.doi.org/10.1016/S0378-7753(00)00558-9 DOI: https://doi.org/10.1016/S0378-7753(00)00558-9
Wang Y-P, Gao X-H, Li H-K, Li H-J, Liu H-G, Guo H-X. Effect of active filler addition on the ionic conductivity of PVDF-PEG polymer electrolyte. J Macromol Sci Part A: Pure Appl Chem 2009; 46: 461-7. http://dx.doi.org/10.1080/10601320902740277 DOI: https://doi.org/10.1080/10601320902740277
Singh PK, Kim KW, Kim KI, Park NG, Rhee HW. Nanocrystalline porous TiO2 electrode with ionic liquid impregnated solid polymer electrolyte for dye sensitized solar cells. J Nanosci Nanotechnol 2008; 8: 5271-4. http://dx.doi.org/10.1166/jnn.2008.1069 DOI: https://doi.org/10.1166/jnn.2008.1069
Xie H-Q, Liu ZS, Guo JS. Synthesis and properties of oxymethylene-linked oxyethylene-oxypropylene-styrene multiblock copolymers. Polymer 1994; 35: 4914-9. http://dx.doi.org/10.1016/0032-3861(94)90752-8 DOI: https://doi.org/10.1016/0032-3861(94)90752-8
Xie H-Q, Xie D, Chen X-Y, Guo J-S. Synthesis, characterization, and properties of two-component amphiphilic polyoxyethylene-containing multiblock copolymers. J Appl Polym Sci 2005; 95: 1295-301. http://dx.doi.org/10.1002/app.21012 DOI: https://doi.org/10.1002/app.21012
Xie H-Q, Tao XQ, Guo JS. Synthesis and properties of styrene–butadiene–oxyethylene multiblock polymers. J Appl Polym Sci 1996; 61: 407-13. http://dx.doi.org/10.1002/(SICI)1097-4628(19960718)61:3<407::AID-APP2>3.0.CO;2-M DOI: https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<407::AID-APP2>3.0.CO;2-M
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 Tatyana Zheltonozhskaya, Elena Shembel, Sergey Fedorchuk, Larisa Kunitskaya, Iryna Maksyuta, Nataliya Permyakova, Yuriy Gomza
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .