Thermal Resistance Properties of Polyurethanes and its Composites: A Short Review

Authors

  • Javier C. Quagliano Amado Chemical Synthesis Division (Elastomer Laboratory), Applied Chemistry Department, Institute for Scientific and Technical Research for the Defense (CITEDEF), Villa Martelli, Buenos Aires, Argentina

DOI:

https://doi.org/10.6000/1929-5995.2019.08.10

Keywords:

Polyurethane, thermal resistance, structure, additives, stability

Abstract

The nature of starting materials and the conditions of polyurethane (PU) preparation are regarded as the main general parameters that determine PU thermal resistance. The effect of structure and presence of additives were identified as the major general factors on this regard. Structural factors include phase microstructure, i.e. chemical structure, proportion and segregation of soft and hard segments); polyol type (petrochemical or natural oil-based); isocyanate and chain extender type and thermoplasticity of PU. Respect to the effect of additives, the incorporation of fillers is the most direct strategy to increase PU heat resistance. With respect to fiber additives, in general a positive effect is found on improving thermal resistance, although this generalization could not apply, considering the large number of different PU and environmental conditions of usage.

References

Harvey J, Butler J, Chartoff R. Development of isocyanurate pour foam formulation for Space Shuttle external tank thermal protection system. University of Dayton, Research Institute, Ohio 1987.

Rahman M,. Kim H. Characterization of waterborne polyurethane adhesives containing different soft segments. Journal of Adhesion Science and Technology 2007; 21(1): 81-96. https://doi.org/10.1163/156856107779976088 DOI: https://doi.org/10.1163/156856107779976088

Prisacariu C, Scortanu E, Agapie B. In Conference Proceedings 27th Meeting (Polymer Processing Society, Marakech) 2011b.

Barikali M. Thermally stable polyurethane elastomers: their synthesis and properties. Loughborough University. Badminton Press 1986; p. 322.

Gaboriaud F, Vantelon JP. Mechanism of thermal degradation of polyurethane based on MDI and propoxylatedtrimethylol propane. Journal of Polymer Science: Polymer Chemistry Edition 1982; 20(8): 2063-2071. https://doi.org/10.1002/pol.1982.170200809 DOI: https://doi.org/10.1002/pol.1982.170200809

Saunders JH, Frisch KC. Polyurethane: Chemistry and Technology; Wiley-Interscience: New York 1962; p. 368.

Ketata N, Sanglar C, Waton H, Alamercery S, Delolme F, Raffin G, Grenier-Loustalot M. Thermal Degradation of Polyurethane Bicomponent Systems in Controlled Atmospheres. Polymers & Polymer Composites 2005; 13(1). https://doi.org/10.1177/096739110501300101 DOI: https://doi.org/10.1177/096739110501300101

Chambers J, Jirickny J, Reese C. The Thermal Decomposition of Polyurethanes and Polyisocyanurates. Fire and Materials 1981; 5(4): 133-141. https://doi.org/10.1002/fam.810050402 DOI: https://doi.org/10.1002/fam.810050402

Paabo M, Levin B. A review of the literature on the gaseous products and toxicity generated from the pyrolysis and combustion of rigid polyurethane foams. Fire and Materials International Journal 1987; 11(1): 1-29. https://doi.org/10.1002/fam.810110102 DOI: https://doi.org/10.1002/fam.810110102

Backus J, Bernard D, Darr W, Saunders J. Flammability and Thermal Stability of Isocyanate-Based Polymers. Journal of Applied Polymer Science 1968; 12: 1053-1074. https://doi.org/10.1002/app.1968.070120507 DOI: https://doi.org/10.1002/app.1968.070120507

Woods G. ICI Polyurethanes Book (2nd edition) John Wiley and Sons, 199 ISBN-13:9780471926580

Randall D, Lee S. The Polyurethanes Book, Wiley Ltd, New York 2002.

Zafar F, EramSharmin E. Polyurethane: An Introduction 2012. https://doi.org/10.5772/51663 DOI: https://doi.org/10.5772/51663

Prisacariu C. Polyurethane Elastomers. From Morphology to Mechanical Aspects. Springer Verlag/Wein 2011; p. 254. https://doi.org/10.1007/978-3-7091-0514-6 DOI: https://doi.org/10.1007/978-3-7091-0514-6

Szycher M. Szycher's Handbook of Polyurethanes. CRC Press, Taylor and Francis 2013; p. 1144. ISBN 9781138075733 https://doi.org/10.1201/b12343 DOI: https://doi.org/10.1201/b12343

Yilmaz F. Aspects of Polyurethanes. IntechOpen 2017. https://doi.org/10.5772/65991 DOI: https://doi.org/10.5772/65991

Lei W, Fang C, Zhou, X, Li J, Yang R, Zhang Z. and Liu D. Thermal properties of polyurethane elastomers with different flexible molecular chain based on p-phenylenediisocyanate. Journal of Materials Science & Technology 2017; 33(1): 1424-1432. https://doi.org/10.1016/j.jmst.2017.05.014 DOI: https://doi.org/10.1016/j.jmst.2017.05.014

Xie F, Zhang T, Bryant P, Kurusingal V, Colwell J, Laycock, B Degradation and stabilization of polyurethane elastomers. Progress in Polymer Science 2019. https://doi.org/10.1016/j.progpolymsci.2018.12.003 DOI: https://doi.org/10.1016/j.progpolymsci.2018.12.003

Chang W. Decomposition behavior of polyurethanes via mathematical simulation. J Appl Polym Sci 1994; 53(13): 1759-1769. https://doi.org/10.1002/app.1994.070531306 DOI: https://doi.org/10.1002/app.1994.070531306

Shufen L, Zhi J, Kaijun Y, Shuqin Y, Chow W. Studies on the Thermal Behavior of Polyurethanes, Polymer-Plastics Technology and Engineering 2006; 45(1): 95-108. https://doi.org/10.1080/03602550500373634

Eceiza A, Martin M, De la Caba G, Kortaberria G, Gabilondo N. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties. Polymer Engineering & Science 48(2): 297-306. https://doi.org/10.1002/pen.20905 DOI: https://doi.org/10.1002/pen.20905

Krol P, PilchPitera B. Phase structure and thermal stability of crosslinked polyurethane elastomers based on well-defined prepolymers. Journal of Applied Polymer Science 2007; 104(3): 1464-1474. https://doi.org/10.1002/app.25011 DOI: https://doi.org/10.1002/app.25011

Almeida C, Ramos M, Gonçalves D, Akcelrud L. Synthesis and Characterization of Segmented Polyurethanes with Controled Molecular Weight Blocks. Part 2: Correlations between Morphology, Thermal and Mechanical Properties. Polímeros: Ciência e Tecnologia 2000; 10(4): 22. DOI: https://doi.org/10.1590/S0104-14282000000400006

Mahanta A, Patak D. HTPB-Polyurethane: a Versatile Fuel Binder for Composite Solid Propellants. In: Fahmina Zafar and EramSharmin. Polyurethane: An Introduction 2012.

Britain J The Polymer´s Chemistry of Synthetia Elastomer's. J.H. Saunders. Chapter VII-A, J.P. Kennedy and Tornquist, ed. Interscience 1969.

Slade P, Jenkins L. Thermal analysis of polyurethane elastomers. Journal of Polymer Science Part C: Polymer Symposia 1964; 6(1): 23-32. https://doi.org/10.1002/polc.5070060105 DOI: https://doi.org/10.1002/polc.5070060105

Yong Y, Chen W, Yu T, Linliu K, Tseng Y. Effect of isocyanates on the crystallinity and thermal stability of polyurethanes J Appl Polym Sci 1996; 62(5): 827-834. https://doi.org/10.1002/(SICI)1097-4628(19961031)62:5<827::AID-APP15>3.3.CO;2-M DOI: https://doi.org/10.1002/(SICI)1097-4628(19961031)62:5<827::AID-APP15>3.0.CO;2-P

Javni I, Zoran S, Petrović Z, Guo A, Fuller R. Thermal stability of polyurethanes based on vegetable oils. J Appl Polym Sci 2000; 77(8): 1723-1734. https://doi.org/10.1002/1097-4628(20000822)77:8<1723::AID-APP9>3.0.CO;2-K DOI: https://doi.org/10.1002/1097-4628(20000822)77:8<1723::AID-APP9>3.0.CO;2-K

Monteavaro L, Izabel C. RiegelII; Cesar L. Petzhold; DimitriosSamios Thermal stability of soy-based polyurethanes Polímeros 2005; 15(2). https://doi.org/10.1590/S0104-14282005000200018 DOI: https://doi.org/10.1590/S0104-14282005000200018

Mizera K, Ryszkowska J. Thermal properties of polyurethane elastomers from soybean oil-based polyol with a different isocyanate index Journal of Elastomers & Plastics 2018; 1-18. https://doi.org/10.1177/0095244318772323 DOI: https://doi.org/10.1177/0095244318772323

Das B, Konwar U, Mandal M, Karak N. Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Industrial Crops and Products 2013; 44: 396-404. https://doi.org/10.1016/j.indcrop.2012.11.028 DOI: https://doi.org/10.1016/j.indcrop.2012.11.028

Kucinska-Lipka J, Gubanska I, Sienkiewicz M. J Therm Anal Calorim 2017; 127: 1631. https://doi.org/10.1007/s10973-016-5743-9 DOI: https://doi.org/10.1007/s10973-016-5743-9

Bocchio J, Wittemberg V, Quagliano J Synthesis and characterization of polyurethane/bentonite nanoclay based nanocomposites using different diisocyanates: relation between mechanical and thermal properties. 3rd. International Conference on Structural Nanocomposites (Nanostruc 2016), IOP Publishing. https://doi.org/10.1088/1757-899X/195/1/012001 DOI: https://doi.org/10.1088/1757-899X/195/1/012001

Huang S, Xiao J, Zhu Y, Qu, J Synthesis and properties of spray-applied high solid content two component polyurethane coatings based on polycaprolactone polyols. Progress in Organic Coatings 2017; 106: 60-68. https://doi.org/10.1016/j.porgcoat.2017.02.011 DOI: https://doi.org/10.1016/j.porgcoat.2017.02.011

Chang T, Zheng W, Chiu Y, Ho S. Thermo-oxidative degradation of phosphorus containing polyurethane. Polymer Degradation and Stability 1995; 49: 353-360. https://doi.org/10.1016/0141-3910(95)00116-4 DOI: https://doi.org/10.1016/0141-3910(95)00116-4

Spirckel M, Regnier N, Mortaigne B, Youssef B, Bunel C. Thermal degradation and fire performance of newphosphonate polyurethanes. Polymer Degradation and Stability 2002; 78(2): 211-218. https://doi.org/10.1016/S0141-3910(02)00135-0 DOI: https://doi.org/10.1016/S0141-3910(02)00135-0

Levchik S, Weil E, Thermal decomposition, combustion and retardancy of polyurethanes-a review of the recent literature. Polym Int 2004; 53: 1585-1610. https://doi.org/10.1002/pi.1314 DOI: https://doi.org/10.1002/pi.1314

Wu J, Li C, Wu Y, Leu M, Tsai Y. Thermal resistance and dynamic damping properties of poly (styrene–butadiene–styrene)/thermoplastic polyurethane composites elastomer material. Composites Science and Technology 2010; 70(8): 1258-1264. https://doi.org/10.1016/j.compscitech.2010.03.014

Drobny J. A Brief History of Thermoplastic Elastomers. Handbook of Thermoplastic Elastomers 2007; 9-11. https://doi.org/10.1016/B978-081551549-4.50003-7 DOI: https://doi.org/10.1016/B978-081551549-4.50003-7

Akindoyo J, Beg M, Ghazali S, Islam M, Jeyaratnama N, Yuvarajc A. Polyurethane types, synthesis and applications-a review RSC Advances 2016; 6(115): 114453-114482. https://doi.org/10.1039/C6RA14525F DOI: https://doi.org/10.1039/C6RA14525F

More AS, Lebarbe T, Maisonneuve L, Gadenne B, Alfos C, Cramail H. Novel fatty acid based diisocyanates towards the synthesis of thermoplastic polyurethanes. Eur Polym J 2013; 49: 823-833. https://doi.org/10.1016/j.eurpolymj.2012.12.013 DOI: https://doi.org/10.1016/j.eurpolymj.2012.12.013

Fujiyama M, Wakino T. Crystal orientation in injection molding of talc-filled polypropylene. Journal of Applied Polymer Science 1991; 42(1): 9-20. https://doi.org/10.1002/app.1991.070420103 DOI: https://doi.org/10.1002/app.1991.070420103

Chattopadhyay D, Webster D. Prog Polym Sci 2009; 34: 1068-1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002 DOI: https://doi.org/10.1016/j.progpolymsci.2009.06.002

Ray S, East A. Advances in Polymer-Filler Composites: Macro to Nano. Materials and Manufacturing Processes 2007; 22(6): 741-749. https://doi.org/10.1080/10426910701385366 DOI: https://doi.org/10.1080/10426910701385366

Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports 2000; 28(1-2): 163. https://doi.org/10.1016/S0927-796X(00)00012-7 DOI: https://doi.org/10.1016/S0927-796X(00)00012-7

Chen H, Huizhen L, Zhou Y, Zheng M, Ke C, Zeng D. Study on thermal properties of polyurethane nanocomposites based on organosepiolite. Polymer Degradation and Stability 2012; 97: 242-247. https://doi.org/10.1016/j.polymdegradstab.2011.12.025 DOI: https://doi.org/10.1016/j.polymdegradstab.2011.12.025

Quagliano J, Bocchio J. Effect of nanoclay loading on the thermal decomposition of nanoclay polyurethane elastomers obtained by bulk polymerization. IOP Conference Series: Materials Science and Engineering 2014; 64(1): 012035. https://doi.org/10.1088/1757-899X/64/1/012035 DOI: https://doi.org/10.1088/1757-899X/64/1/012035

Reza Rahnama M, Barikani M, Barmar M, Honarkar H. An Investigation into the Effects of Different Nanoclays on Polyurethane Nanocomposites Properties. Plastics-Polymer-Plastics Technology and Engineering 2014; 53(8): 801-810. https://doi.org/10.1080/03602559.2014.886045 DOI: https://doi.org/10.1080/03602559.2014.886045

Stefanović I, Spirkova M, Ostojićc S, Pavlović P, Pergal M. Monntmorillonite/poly(urethane-siloxane) nanocomposites: Morphological, thermal, mechanical and surface properties. Applied Clay Science 2007; 149(1): 136-146. https://doi.org/10.1016/j.clay.2017.08.021 DOI: https://doi.org/10.1016/j.clay.2017.08.021

Seo J, Kim B. Preparations and Properties of Waterborne Polyurethane / Nanosilica Composites Polymer Bulletin 2005; 54(1-2): 123-128. https://doi.org/10.1007/s00289-005-0367-4 DOI: https://doi.org/10.1007/s00289-005-0367-4

Guler T, Tayfun U, Bayramli E, Dogan M. Effect of expandable graphite on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite and hydromagnesite mineral. Thermochimica Acta 2017; 647: 70-80. https://doi.org/10.1016/j.tca.2016.12.001 DOI: https://doi.org/10.1016/j.tca.2016.12.001

Dias G, Argenton Prado M, Carone C, Ligabue R, Dumas A, Martin F, Le Roux C, Micoud P, Einlott S. Synthetic silico-metallic mineral particles (SSMMP) as nanofillers: comparing the effect of different hydrothermal treatments on the PU/SSMMP nanocomposites properties. Polym Bull 2015; 72: 2991. https://doi.org/10.1007/s00289-015-1449-6 DOI: https://doi.org/10.1007/s00289-015-1449-6

Bajsi E, Rek V, Sosi I. Preparation and Characterization of Talc Filled Thermoplastic Polyurethane/Polypropylene Blends. Journal of Polymers 2014; Article ID 289283, 8 p. https://doi.org/10.1155/2014/289283 DOI: https://doi.org/10.1155/2014/289283

Liu H, Zhen S. Polyurethane Networks Nanoreinforced by Polyhedral OligomericSilsesquioxane. Macromolecular Rapid Communications 2005; 26(3): 196-200. https://doi.org/10.1002/marc.200400465 DOI: https://doi.org/10.1002/marc.200400465

Allcorn E, Natali M, Koo J. Ablation performance and characterization of thermoplastic polyurethane elastomer nanocomposites Composites Part A: Applied Science and Manufacturing 2013; 45: 109-118. https://doi.org/10.1016/j.compositesa.2012.08.017 DOI: https://doi.org/10.1016/j.compositesa.2012.08.017

Mothe C, De Araujo C. Properties of polyurethane elastomers and composites by thermal analysis Thermochimica Acta 2000; 357-358: 321-325. https://doi.org/10.1016/S0040-6031(00)00403-2 DOI: https://doi.org/10.1016/S0040-6031(00)00403-2

El-Shekeil Y, Sapuan S. Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites Materials & Design 2012; 40: 299-303. https://doi.org/10.1016/j.matdes.2012.04.003 DOI: https://doi.org/10.1016/j.matdes.2012.04.003

Wilberforce S, Hashemi S. Effect of fibre concentration, strain rate and weldline on mechanical properties of injection-moulded short glass fibre reinforced thermoplastic polyurethane. J Mater Sci 2009; 44: 1333-1343. https://doi.org/10.1007/s10853-008-3233-6 DOI: https://doi.org/10.1007/s10853-008-3233-6

Vajrasthira C, Amornsakchai T, Bualek-Limcharo E. Fiber–matrix interactions in aramid-short-fiber-reinforced thermoplastic polyurethane composites. J ApplPolym Sci 2003; 87: 1059-1067. https://doi.org/10.1002/app.11484 DOI: https://doi.org/10.1002/app.11484

Correa R, Nunes R, Filho W. Short fiber reinforced thermoplastic polyurethane elastomer composites Polym Compos 1998; 19: 152-155. https://doi.org/10.1002/pc.10086 DOI: https://doi.org/10.1002/pc.10086

Montaudo G, Puglisi C, Scamporrino E, Vitalini D. Mechanism of thermal degradation of polyurethanes. Effect of ammonium polyphosphate. Macromolecules 1984; 17(8): 1605-1614. https://doi.org/10.1021/ma00138a032 DOI: https://doi.org/10.1021/ma00138a032

Aslzadeh M, Abdouss M, Sadeghi G. Preparation and characterization of new flame retardant polyurethane composite and nanocomposite. Journal of Applied Polymer Science 2012; 127(3): 16831690. https://doi.org/10.1002/app.37809 DOI: https://doi.org/10.1002/app.37809

Shufen L, Zhi J, Kaijun Y, Shuqin Y, Chow W. Studies on the Thermal Behavior of Polyurethanes, Polymer-Plastics Technology and Engineering 2006; 45(1): 95-108. https://doi.org/10.1080/03602550500373634 DOI: https://doi.org/10.1080/03602550500373634

Filip D, Macocinschi D. Thermogravimetric analysis of polyurethane–polysulfone blends. Polym Int 2002; 51: 699-706. https://doi.org/10.1002/pi.972 DOI: https://doi.org/10.1002/pi.972

Wu Li C, Wu Y, Leu M, Tsai Y. Thermal resistance and dynamic damping properties of poly (styrene–butadiene–styrene)/thermoplastic polyurethane composites elastomer material Composites Science and Technology 2010; 70(8): 1258-1264. https://doi.org/10.1016/j.compscitech.2010.03.014 DOI: https://doi.org/10.1016/j.compscitech.2010.03.014

Chuayjuljit S, Ketthongmongkol S. Properties and morphology of injection and compression-molded thermoplastic polyurethane/polypropylene-graft-maleic anhydride/wollastonite composites. Journal of Thermoplastic Composite Materials 2012; 26(7): 923-935. https://doi.org/10.1177/0892705711431104 DOI: https://doi.org/10.1177/0892705711431104

Bugajny M, Le Bras M, Bourbigot S. Thermoplastic Polyurethanes as Carbonization Agents in Intumescent Blends. Part 2: Thermal Behavior of Polypropylene/ Thermoplastic Polyurethane/Ammonium Polyphosphate Blends. Journal of Fire Sciences 2000; 18(1): 7-27. https://doi.org/10.1177/073490410001800102 DOI: https://doi.org/10.1106/W2A1-YREW-GC5A-P4PG

Jiao Y, Wang X, Wang Y, Wang D, Zhai Y, Lin J. Thermal Degradation and Combustion Behaviors of Flame-Retardant Polypropylene/Thermoplastic Polyurethane Blends. Journal of Macromolecular Science, Part B 2009; 48(5): 889-909. https://doi.org/10.1080/00222340903028969 DOI: https://doi.org/10.1080/00222340903028969

Shanks R, Kong I. Thermoplastic Elastomers. 137-154. In: Adel El-Sonbati, editor. Thermoplastic Elastomers. Intech 2012; 416 p. ISBN: 978-953-51-0346-2.

Li N, Zeng F, Wang Y, Qu Z, Zhang C, Li J, Bai Y. Synthesis and characterization of fluorinated polyurethane containing carborane in the main chain: Thermal, mechanical and chemical resistance properties. Chinese Journal of Polymer Science 2017; 36(1): 85-97. https://doi.org/10.1007/s10118-018-2014-1 DOI: https://doi.org/10.1007/s10118-018-2014-1

Bu X, Lu Y, Zhang Z, Liu F, Liu J, Huai X. Hierarchical Carbon Nanotube/SiO2-TiO2 Reinforced Polyurethane Composites: Thermal, Mechanical and Abrasion Resistance Properties. Polymer-Plastics Technology and Engineering 2018; 1-10. https://doi.org/10.1080/03602559.2018.1471711 DOI: https://doi.org/10.1080/03602559.2018.1471711

Wang Y, Song H, Ge H, Wang J, Wang Y, Jia S, Deng T, Hou X. Controllable degradation of polyurethane elastomer via selective cleavage of C-O and C-N bonds. Journal of Cleaner Production 2018; 176: 873-879 876. https://doi.org/10.1016/j.jclepro.2017.12.046 DOI: https://doi.org/10.1016/j.jclepro.2017.12.046

Downloads

Published

2019-12-20

How to Cite

Amado, J. C. Q. . (2019). Thermal Resistance Properties of Polyurethanes and its Composites: A Short Review. Journal of Research Updates in Polymer Science, 8, 66–84. https://doi.org/10.6000/1929-5995.2019.08.10

Issue

Section

Articles