Properties and Applications of Biodegradable Polymers

Authors

  • M.A. Sayed Patwary PP and PDC, Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh
  • S.M. Surid PP and PDC, Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh
  • M.A. Gafur PP and PDC, Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh

DOI:

https://doi.org/10.6000/1929-5995.2020.09.03

Keywords:

Degradable, sustainable, bio-organisms, crystallinity, natural, synthetic.

Abstract

Biodegradable materials are one of the major discussable matters in the modern world. To keep and produce environment-friendly products for our daily usage the utilization of degradable materials is increasing at a high rate. The modern world wants sustainable products which will not bring about any harm to the environment. Products made from plastics are sustainable but they cause great harm to our environment due to lack of degradation property. After the end of our usage, these materials can sustain for a long time without any degradation which causes a supreme level of loss to our environment. But if we can produce products by using biodegradable raw materials, they will be degraded by the action of bio-organisms hence our environment will be protected from a great loss. So, it has become a crying need for us to use biodegradable raw materials in our products. The materials which are not biodegradable cause a great pollution especially soil pollution. To protect the world from the cruel humiliation of waste, it has become an overwhelming necessity to manufacture biodegradable products, which can quickly be degraded in the environment, from our daily useable items. The materials contain almost all the properties which are suitable for our environment. Already these materials have been using in several sectors and showing their applications for their friendly properties.

References

Van de Velde K, Kiekens P. Biopolymers: overview of several properties and consequences on their applications. Polymer testing 2002; 21: 433-442. https://doi.org/10.1016/S0142-9418(01)00107-6 DOI: https://doi.org/10.1016/S0142-9418(01)00107-6

Rouilly A, Rigal L. Agro-materials: a bibliographic review. Journal of Macromolecular Science, Part C: Polymer Reviews 2002; 42: 441-479. https://doi.org/10.1081/MC-120015987 DOI: https://doi.org/10.1081/MC-120015987

Willett JL. Mechanical properties of LDPE/granular starch composites. Journal of Applied Polymer Science 1994; 54: 1685-1695. https://doi.org/10.1002/app.1994.070541112 DOI: https://doi.org/10.1002/app.1994.070541112

Cho JW, Woo KS, Chun BC, Park JS. Ultraviolet reflective and mechanical properties of polyethylene mulching films. European Polymer Journal 2001; 37: 1227-1232. https://doi.org/10.1016/S0014-3057(00)00223-8

Lawton JW. Effect of starch type on the properties of starch containing films. Carbohydrate Polymers 1996; 29: 203-208. https://doi.org/10.1016/0144-8617(96)00028-8 DOI: https://doi.org/10.1016/0144-8617(96)00028-8

Briassoulis D. Mechanical behaviour of biodegradable agricultural films under real field conditions. Polymer Degradation and Stability 2006; 91: 1256-1272. https://doi.org/10.1016/j.polymdegradstab.2005.09.016 DOI: https://doi.org/10.1016/j.polymdegradstab.2005.09.016

Kumar AA, Karthick K, Arumugam KP. Properties of biodegradable polymers and degradation for sustainable development. International Journal of Chemical Engineering and Applications 2011; 2: 164-167. https://doi.org/10.7763/IJCEA.2011.V2.95 DOI: https://doi.org/10.7763/IJCEA.2011.V2.95

Cho JW, Woo KS, Chun BC, Park JS. Ultraviolet reflective and mechanical properties of polyethylene mulching films. European Polymer Journal 2001; 37: 1227-1232. https://doi.org/10.1016/S0014-3057(00)00223-8 DOI: https://doi.org/10.1016/S0014-3057(00)00223-8

Karlsson S, Albertsson AC. Biodegradable polymers and environmental interaction. Polymer Engineering & Science 1998; 38: 1251-1253. https://doi.org/10.1002/pen.10294

Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. Journal of polymer science Part B: polymer physics 2011; 49: 832-864. https://doi.org/10.1002/polb.22259 DOI: https://doi.org/10.1002/polb.22259

Ghanbarzadeh B, Almasi H. Biodegradable polymers. Biodegradation-life of science. InTech Publications, Croatia 2013; 1: 141-186. https://doi.org/10.5772/56230 DOI: https://doi.org/10.5772/56230

Vaissiere G, Chevallay B, Herbage D, Damour O. Comparative analysis of different collagen-based biomaterials as scaffolds for long-term culture of human fibroblasts. Medical and Biological Engineering and Computing 2000; 38: 205-210. https://doi.org/10.1007/BF02344778 DOI: https://doi.org/10.1007/BF02344778

Chandy T, Sharma CP. Chitosan-as a biomaterial. Biomaterials, artificial cells and artificial organs 1990; 18: 1-24. https://doi.org/10.3109/10731199009117286 DOI: https://doi.org/10.3109/10731199009117286

Suh JKF, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000; 21: 2589-2598. https://doi.org/10.1016/S0142-9612(00)00126-5 DOI: https://doi.org/10.1016/S0142-9612(00)00126-5

Chuang WY, Young TH, Yao CH, Chiu WY. Properties of the poly (vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials 1999; 20: 1479-1487. https://doi.org/10.1016/S0142-9612(99)00054-X DOI: https://doi.org/10.1016/S0142-9612(99)00054-X

Zhang M, Li XH, Gong YD, Zhao NM, Zhang XF. Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 2002; 23: 2641-2648. https://doi.org/10.1016/S0142-9612(01)00403-3 DOI: https://doi.org/10.1016/S0142-9612(01)00403-3

Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen–chitosan matrices for tissue engineering. Tissue engineering 2001; 7: 203-210. https://doi.org/10.1089/107632701300062831 DOI: https://doi.org/10.1089/107632701300062831

Karim AA, Bhat R. Gelatin alternatives for the food industry: recent developments, challenges and prospects. Trends in Food Science and Technology 2008; 19: 644–656. https://doi.org/10.1016/j.tifs.2008.08.001 DOI: https://doi.org/10.1016/j.tifs.2008.08.001

Ahmad M, Benjakul S. Characteristics of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as influenced by acid pretreatment and extraction time. Food Hydrocolloids 2011; 25: 381-388. https://doi.org/10.1016/j.foodhyd.2010.07.004 DOI: https://doi.org/10.1016/j.foodhyd.2010.07.004

Yahdiana H, Irwandi J, Effionora A. Characterization and functional properties of gelatin extracted from goatskin. International Food Research Journal 2018; 25: 275-281.

Shyni K, Hema GS, Ninan G, Mathew S, Joshy CG, Lakshmanan PT. Isolation and characterization of gelatin from the skins of skipjack tuna (Katsuwonus pelamis), dog shark (Scoliodon sorrakowah), and rohu (Labeo rohita). Food hydrocolloids 2014; 39: 68-76. https://doi.org/10.1016/j.foodhyd.2013.12.008 DOI: https://doi.org/10.1016/j.foodhyd.2013.12.008

Glicklis R, Shapiro L, Agbaria R, Merchuk JC, Cohen S. Hepatocyte behavior within three‐dimensional porous alginate scaffolds. Biotechnology and bioengineering 2000; 67: 344-353. https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<344::AID-BIT11>3.0.CO;2-2 DOI: https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<344::AID-BIT11>3.0.CO;2-2

Chung TW, Yang J, Akaike T, Cho KY, Nah JW, Kim SI, Cho CS. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 2002; 23: 2827-2834. https://doi.org/10.1016/S0142-9612(01)00399-4 DOI: https://doi.org/10.1016/S0142-9612(01)00399-4

Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2002; 60: 217-223. https://doi.org/10.1002/jbm.1287 DOI: https://doi.org/10.1002/jbm.1287

Orive G, Hernandez RM, Gascon AR, Igartua M, Pedraz JL. Survival of different cell lines in alginate-agarose microcapsules. European journal of pharmaceutical sciences 2003; 18: 23-30. https://doi.org/10.1016/S0928-0987(02)00220-8 DOI: https://doi.org/10.1016/S0928-0987(02)00220-8

Mosahebi A, Simon M, Wiberg M, Terenghi G. A novel use of alginate hydrogel as Schwann cell matrix. Tissue engineering 2001; 7: 525-534. https://doi.org/10.1089/107632701753213156 DOI: https://doi.org/10.1089/107632701753213156

Dar A, Shachar M, Leor J, Cohen S. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnology and bioengineering 2002; 80: 305-312. https://doi.org/10.1002/bit.10372 DOI: https://doi.org/10.1002/bit.10372

Masuda K, Sah RL, Hejna MJ, Thonar EJM. A novel two‐step method for the formation of tissue‐engineered cartilage by mature bovine chondrocytes: The alginate-recovered-chondrocyte (ARC) method. Journal of Orthopaedic Research 2003; 21: 139-148. https://doi.org/10.1016/S0736-0266(02)00109-2 DOI: https://doi.org/10.1016/S0736-0266(02)00109-2

Szwajkowska M, Wolanciuk A, Barłowska J, Krol J, Litwińczuk Z. Bovine milk proteins as the source of bioactive peptides influencing the consumers’ immune system–a review. Animal Science Papers and Reports 2011; 29: 269-280.

Harrington LK, Mayberry JF. A re‐appraisal of lactose intolerance. International journal of clinical practice 2008; 62: 1541-1546. https://doi.org/10.1111/j.1742-1241.2008.01834.x DOI: https://doi.org/10.1111/j.1742-1241.2008.01834.x

He T, Venema K, Priebe MG, Welling GW, Brummer RJ, Vonk RJ. The role of colonic metabolism in lactose intolerance. European journal of clinical investigation 2008; 38: 541-547. https://doi.org/10.1111/j.1365-2362.2008.01966.x DOI: https://doi.org/10.1111/j.1365-2362.2008.01966.x

Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. The American journal of clinical nutrition 2002; 76: 5-56. https://doi.org/10.1093/ajcn/76.1.5 DOI: https://doi.org/10.1093/ajcn/76.1.5

Gambelli L. Milk and its sugar-lactose: a picture of evaluation methodologies. Beverages 2017; 3(3): 35. https://doi.org/10.3390/beverages3030035 DOI: https://doi.org/10.3390/beverages3030035

Fiocchi A, Restani P, Leo G, Martelli A, Bouygue GR, Terracciano L, Valsasina R. Clinical tolerance to lactose in children with cow’s milk allergy. Pediatrics 2003; 112: 359-362. https://doi.org/10.1542/peds.112.2.359 DOI: https://doi.org/10.1542/peds.112.2.359

Socha J, Ksiazyk J, Flatz G, Flatz SD. Prevalence of primary adult lactose malabsorption in Poland. Annals of human biology 1984; 11: 311-316. https://doi.org/10.1080/03014468400007211 DOI: https://doi.org/10.1080/03014468400007211

Lentfer C, Therin M, Torrence R. Starch grains and environmental reconstruction: a modern test case from West New Britain, Papua New Guinea. Journal of Archaeological Science 2002; 29: 687-698. https://doi.org/10.1006/jasc.2001.0783 DOI: https://doi.org/10.1006/jasc.2001.0783

Buléon A, Colonna P, Planchot V, Ball S. Starch granules: structure and biosynthesis. International journal of biological macromolecules 1998; 23: 85-112. https://doi.org/10.1016/S0141-8130(98)00040-3 DOI: https://doi.org/10.1016/S0141-8130(98)00040-3

Hoover R. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate polymers 2001; 45: 253-267. https://doi.org/10.1016/S0144-8617(00)00260-5 DOI: https://doi.org/10.1016/S0144-8617(00)00260-5

Singh N, Singh J, Kaur L, Sodhi NS, Gill BS. Morphological, thermal and rheological properties of starches from different botanical sources. Food chemistry 2003; 81: 219-231. https://doi.org/10.1016/S0308-8146(02)00416-8 DOI: https://doi.org/10.1016/S0308-8146(02)00416-8

Cheetham NW, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate polymers 1998; 36: 277-284. https://doi.org/10.1016/S0144-8617(98)00007-1 DOI: https://doi.org/10.1016/S0144-8617(98)00007-1

Liu H, Lelievre J, Ayoung-Chee W. A study of starch gelatinization using differential scanning calorimetry, X-ray, and birefringence measurements. Carbohydrate Research 1991; 210: 79-87. https://doi.org/10.1016/0008-6215(91)80114-3 DOI: https://doi.org/10.1016/0008-6215(91)80114-3

Zhang P, Whistler RL, BeMiller JN, Hamaker BR. Banana starch: production, physicochemical properties, and

digestibility—a review. Carbohydrate polymers 2005; 59: 443-458. https://doi.org/10.1016/j.carbpol.2004.10.014 DOI: https://doi.org/10.1016/j.carbpol.2004.10.014

Sarker MZI, Elgadir MA, Ferdosh S, Akanda MJH, Aditiawati, P, Noda, T. Rheological behavior of starch‐based biopolymer mixtures in selected processed foods. Starch‐Stärke 2013; 65: 73-81. https://doi.org/10.1002/star.201200072 DOI: https://doi.org/10.1002/star.201200072

O'sullivan AC. Cellulose: the structure slowly unravels. Cellulose 1997; 4: 173-207. https://doi.org/10.1023/A:1018431705579 DOI: https://doi.org/10.1023/A:1018431705579

Festucci-Buselli RA, Otoni WC, Joshi CP. Structure, organization, and functions of cellulose synthase complexes in higher plants. Brazilian Journal of Plant Physiology 2007; 19: 1-13. https://doi.org/10.1590/S1677-04202007000100001 DOI: https://doi.org/10.1590/S1677-04202007000100001

Sundar Raj AA, Rubila S, Jayabalan R, Ranganathan TV. A review on pectin: Chemistry due to general properties of pectin and its pharmaceutical uses. Scientific reports 2012; 1: 550-1.

De Vries JA, Hansen M, Søderberg J, Glahn PE, Pedersen JK. Distribution of methoxyl groups in pectins. Carbohydrate polymers 1986; 6: 165-176. https://doi.org/10.1016/0144-8617(86)90017-2 DOI: https://doi.org/10.1016/0144-8617(86)90017-2

Grant GT, Morris ER, Rees DA, Smith PJ, Thom D. Biological interactions between polysaccharides and divalent cations: the egg‐box model. FEBS letters 1973; 32: 195-198. https://doi.org/10.1016/0014-5793(73)80770-7 DOI: https://doi.org/10.1016/0014-5793(73)80770-7

Saini RD. Biodegradable polymers. International Journal of Applied Chemistry 2017; 13: 179-196. https://doi.org/10.5958/0974-4150.2018.00037.8 DOI: https://doi.org/10.5958/0974-4150.2018.00037.8

Carothers WH, Hill JW. Studies of polymerization and ring formation. XV. Artificial fibers from synthetic linear condensation superpolymers. Journal of the American Chemical Society 1932; 54: 1579-1587. https://doi.org/10.1021/ja01343a051 DOI: https://doi.org/10.1021/ja01343a051

Garlotta D. A literature review of poly (lactic acid). Journal of Polymers and the Environment 2001; 9: 63-84. https://doi.org/10.1023/A:1020200822435 DOI: https://doi.org/10.1023/A:1020200822435

Okada M. Chemical syntheses of biodegradable polymers. Progress in polymer science 2002; 27: 87-133. https://doi.org/10.1016/S0079-6700(01)00039-9 DOI: https://doi.org/10.1016/S0079-6700(01)00039-9

Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 2007; 82: 233-247. https://doi.org/10.1002/jctb.1667 DOI: https://doi.org/10.1002/jctb.1667

Sanchez JG, Tsuchii A, Tokiwa Y. Degradation of polycaprolactone at 50° C by a thermotolerant Aspergillus sp. Biotechnology Letters 2000; 22: 849-853. https://doi.org/10.1023/A:1005603112688 DOI: https://doi.org/10.1023/A:1005603112688

Tokiwa Y, Suzuki T. Hydrolysis of polyesters by lipases. Nature 1977; 270: 71-76. https://doi.org/10.1038/270076a0 DOI: https://doi.org/10.1038/270076a0

Cook WJ, Cameron JA, Bell JP, Huang SJ. Scanning electron microscopic visualization of biodegradation of polycaprolactones by fungi. Journal of Polymer Science: Polymer Letters Edition 1981; 19: 159-165. https://doi.org/10.1002/pol.1981.130190402 DOI: https://doi.org/10.1002/pol.1981.130190402

Tokiwa Y, Suzuki T, Takeda K. Two types of lipases in hydrolysis of polyester. Agricultural and biological chemistry 1988; 52: 1937-1943. https://doi.org/10.1271/bbb1961.52.1937 DOI: https://doi.org/10.1080/00021369.1988.10868966

Seretoudi G, Bikiaris D, Panayiotou C. Synthesis, characterization and biodegradability of poly (ethylene succinate)/poly (ε-caprolactone) block copolymers. Polymer 2002; 43: 5405-5415. https://doi.org/10.1016/S0032-3861(02)00433-0 DOI: https://doi.org/10.1016/S0032-3861(02)00433-0

Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 2003; 5: 1-16. https://doi.org/10.22203/eCM.v005a01 DOI: https://doi.org/10.22203/eCM.v005a01

Holland SJ, Tighe BJ. Biodegradable polymers. Advances in pharmaceutical science. Academic Press, London 1992; 6: 101-164.

Ashammakhi N, Rokkanen P. Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 1997; 18: 3-9. https://doi.org/10.1016/S0142-9612(96)00107-X DOI: https://doi.org/10.1016/S0142-9612(96)00107-X

Leong KW, Brott BC, Langer R. Bioerodible polyanhydrides as drug‐carrier matrices. I: Characterization, degradation, and release characteristics. Journal of biomedical materials research 1985; 19: 941-955. https://doi.org/10.1002/jbm.820190806 DOI: https://doi.org/10.1002/jbm.820190806

Uhrich KE, Thomas TT, Laurencin CT, Langer R. In vitro degradation characteristics of poly (anhydride‐imides) containing trimellitylimidoglycine. Journal of applied polymer science 1997; 63: 1401-1411. https://doi.org/10.1002/(SICI)1097-4628(19970314)63:11<1401::AID-APP2>3.0.CO;2-Q DOI: https://doi.org/10.1002/(SICI)1097-4628(19970314)63:11<1401::AID-APP2>3.0.CO;2-Q

Anseth KS, Svaldi DC, Laurencin CT, Langer R. Photopolymerization of novel degradable networks for orthopedic applications 1997. https://doi.org/10.1021/bk-1997-0673.ch014 DOI: https://doi.org/10.1021/bk-1997-0673.ch014

Laurencin CT, Pierre-Jacques HM, Langer R. Toxicology and biocompatibility considerations in the evaluation of polymeric materials for biomedical applications. Clinics in laboratory medicine 1990; 10: 549-570.

Göpferich A, Teßmar J. Polyanhydride degradation and erosion. Advanced drug delivery reviews 2002; 54: 911-931. https://doi.org/10.1016/S0169-409X(02)00051-0 DOI: https://doi.org/10.1016/S0169-409X(02)00051-0

Jerbić IŠ. Biodegradable Synthetic Polymers and their Application in Advanced Drug Delivery Systems (DDS). Nano Tech Appl 2018; 1: 1-9. https://doi.org/10.33425/2639-9466.1007 DOI: https://doi.org/10.33425/2639-9466.1007

Ng SY, Vandamme T, Taylor MS, Heller J. Synthesis and erosion studies of self-catalyzed poly (ortho ester) s. Macromolecules 1997; 30: 770-772. https://doi.org/10.1021/ma9610626 DOI: https://doi.org/10.1021/ma9610626

Iwata T, Doi Y. Morphology and enzymatic degradation of poly (L-lactic acid) single crystals. Macromolecules 1998; 31: 2461-2467. https://doi.org/10.1021/ma980008h DOI: https://doi.org/10.1021/ma980008h

Tsuji H, Miyauchi S. Poly (L-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly (L-lactide) without free amorphous region. Polymer degradation and stability 2001; 71: 415-424. https://doi.org/10.1016/S0141-3910(00)00191-9 DOI: https://doi.org/10.1016/S0141-3910(00)00191-9

Tokiwa Y, Suzuki T. Hydrolysis of polyesters by Rhizopus delemar lipase. Agricultural and Biological Chemistry 1978; 42: 1071-1072. https://doi.org/10.1271/bbb1961.42.1071 DOI: https://doi.org/10.1080/00021369.1978.10863111

Tokiwa Y, Suzuki T. Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. Journal of Applied Polymer Science 1981; 26(2): 441-448. https://doi.org/10.1002/app.1981.070260206 DOI: https://doi.org/10.1002/app.1981.070260206

Tokiwa Y, Suzuki T, Ando T. Synthesis of copolyamide–esters and some aspects involved in their hydrolysis by lipase. Journal of Applied Polymer Science 1979; 24: 1701-1711. https://doi.org/10.1002/app.1979.070240710 DOI: https://doi.org/10.1002/app.1979.070240710

Karlsson S, Albertsson AC. Biodegradable polymers and environmental interaction. Polymer Engineering & Science 1998; 38: 1251-1253. https://doi.org/10.1002/pen.10294 DOI: https://doi.org/10.1002/pen.10294

Chandra RUSTGI, Rustgi R. Biodegradable polymers. Progress in polymer science 1998; 23: 1273-1335. https://doi.org/10.1016/S0079-6700(97)00039-7

Huang SJ, Bitritto M, Leong KW, Pavlisko J, Roby M. JR Knox in DL Allara and WL Hawkins, eds. Adv. Chem. Ser 1978; 169: 202-205. https://doi.org/10.1021/ba-1978-0169.ch017 DOI: https://doi.org/10.1021/ba-1978-0169.ch017

Vasanthi K. Biodegradable Polymers - A Review. Polym Sci 2017; 3: 1-7.

Andreopoulos AG, Theophanides T. Degradable plastics: A smart approach to various applications. Journal of Elastomers & Plastics 1994; 26: 308-326. https://doi.org/10.1177/009524439402600401 DOI: https://doi.org/10.1177/009524439402600401

Castro GR, Panilaitis B, Kaplan DL. Emulsan, a tailorable biopolymer for controlled release. Bioresource technology 2008; 99: 4566-4571. https://doi.org/10.1016/j.biortech.2007.06.059 DOI: https://doi.org/10.1016/j.biortech.2007.06.059

Kiatkamjornwong S, Chomsaksakul W, Sonsuk M. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiation Physics and Chemistry 2000; 59: 413-427. https://doi.org/10.1016/S0969-806X(00)00297-8 DOI: https://doi.org/10.1016/S0969-806X(00)00297-8

Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G. Potential of biobased materials for food packaging. Trends in food science & technology 1999; 10: 52-68. https://doi.org/10.1016/S0924-2244(99)00019-9

Malafaya PB, Silva GA, Reis RL. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced drug delivery reviews 2007; 59: 207-233. https://doi.org/10.1016/j.addr.2007.03.012 DOI: https://doi.org/10.1016/j.addr.2007.03.012

Yamaoka T, Tabata Y, Ikada Y. Body distribution of intravenously administered gelatin with different molecular weights. Journal of controlled release 1994; 31: 1-8. https://doi.org/10.1016/0168-3659(94)90245-3 DOI: https://doi.org/10.1016/0168-3659(94)90245-3

Hokugo A, Ozeki M, Kawakami O, Sugimoto K, Mushimoto K, Morita S, Tabata Y. Poster 27-Potentiality of gelatin hydrogel in promoting the bone repairing activity of platelet-rich plasma (PRP); An experimental study in rabbit. Journal of Oral and Maxillofacial Surgery 2003; 8: 95-96. https://doi.org/10.1016/S0278-2391(03)00629-3 DOI: https://doi.org/10.1016/S0278-2391(03)00629-3

Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Progress in polymer science 2007; 32: 762-798. https://doi.org/10.1016/j.progpolymsci.2007.05.017 DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.017

Muzzarelli RA. Chitin and its derivatives: new trends of applied research. Carbohydrate Polymers 1983; 3: 53-75. https://doi.org/10.1016/0144-8617(83)90012-7 DOI: https://doi.org/10.1016/0144-8617(83)90012-7

Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials 2003; 24: 2339-2349. https://doi.org/10.1016/S0142-9612(03)00026-7 DOI: https://doi.org/10.1016/S0142-9612(03)00026-7

Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromolecular bioscience 2006; 6: 623-633. https://doi.org/10.1002/mabi.200600069 DOI: https://doi.org/10.1002/mabi.200600069

Tiainen J, Veiranto M, Suokas E, Törmälä P, Waris T, Ninkovic M, Ashammakhi N. Bioabsorbable ciprofloxacin-containing and plain self-reinforced polylactide-polyglycolide 80/20 screws: pullout strength properties in human cadaver parietal bones. Journal of Craniofacial Surgery 2002; 13: 427-433. https://doi.org/10.1097/00001665-200205000-00013 DOI: https://doi.org/10.1097/00001665-200205000-00013

Ibim SE, Uhrich KE, Attawia M, Shastri VR, El‐Amin SF, Bronson R, Laurencin CT. Preliminary in vivo report on the osteocompatibility of poly (anhydride‐co‐imides) evaluated in a tibial model. Journal of biomedical materials research 1998; 43: 374-379. https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<374::AID-JBM5>3.0.CO;2-5 DOI: https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<374::AID-JBM5>3.0.CO;2-5

Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G. Potential of biobased materials for food packaging. Trends in food science & technology 1999; 10: 52-68. https://doi.org/10.1016/S0924-2244(99)00019-9 DOI: https://doi.org/10.1016/S0924-2244(99)00019-9

Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromolecular bioscience 2004; 4: 835-864. https://doi.org/10.1002/mabi.200400043 DOI: https://doi.org/10.1002/mabi.200400043

Sinclair RG. The case for polylactic acid as a commodity packaging plastic. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 1996; 33: 585-597. https://doi.org/10.1080/10601329608010880 DOI: https://doi.org/10.1080/10601329608010880

Cao N, Fu Y, He J. Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocolloids 2007; 21: 1153-1162. https://doi.org/10.1016/j.foodhyd.2006.09.001 DOI: https://doi.org/10.1016/j.foodhyd.2006.09.001

Ham-Pichavant F, Sèbe G, Pardon P, Coma V. Fat resistance properties of chitosan-based paper packaging for food applications. Carbohydrate polymers 2005; 61: 259-265. https://doi.org/10.1016/j.carbpol.2005.01.020 DOI: https://doi.org/10.1016/j.carbpol.2005.01.020

Dutta PK, Tripathi S, Mehrotra GK, Dutta J. Perspectives for chitosan based antimicrobial films in food applications. Food chemistry 2009; 11: 1173-1182. https://doi.org/10.1016/j.foodchem.2008.11.047 DOI: https://doi.org/10.1016/j.foodchem.2008.11.047

Chandra RUSTGI, Rustgi R. Biodegradable polymers. Progress in polymer science 1998; 23: 1273-1335. https://doi.org/10.1016/S0079-6700(97)00039-7 DOI: https://doi.org/10.1016/S0079-6700(97)00039-7

Briassoulis D. An overview on the mechanical behaviour of biodegradable agricultural films. Journal of Polymers and the Environment 2004; 12: 65-81. https://doi.org/10.1023/B:JOOE.0000010052.86786.ef DOI: https://doi.org/10.1023/B:JOOE.0000010052.86786.ef

Vink ET, Rábago KR, Glassner DA, Springs B, O'Connor RP, Kolstad J, Gruber PR. The sustainability of NatureWorks™ polylactide polymers and Ingeo™ polylactide fibers: an update of the future. Macromolecular Bioscience 2004; 4: 551-564. https://doi.org/10.1002/mabi.200400023 DOI: https://doi.org/10.1002/mabi.200400023

Agulló E, Rodríguez MS, Ramos V, Albertengo L. Present and future role of chitin and chitosan in food. Macromolecular Bioscience 2003; 3: 521-530. https://doi.org/10.1002/mabi.200300010 DOI: https://doi.org/10.1002/mabi.200300010

Downloads

Published

2020-08-05

How to Cite

Patwary, M. S. ., Surid, S. ., & Gafur, M. . (2020). Properties and Applications of Biodegradable Polymers. Journal of Research Updates in Polymer Science, 9, 32–41. https://doi.org/10.6000/1929-5995.2020.09.03

Issue

Section

Articles