RAFT Polymerization of Styrene with Potassium Ethylxanthate as the Chain Transfer Agent

Authors

  • Xinmeng Xu College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
  • Xiang Xu College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
  • Yanning Zeng College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
  • Faai Zhang College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China

DOI:

https://doi.org/10.6000/1929-5995.2020.09.05

Keywords:

Potassium ethylxanthate, Styrene, RAFT, Molecular weight, Chain-end functionality

Abstract

Using potassium ethylxanthate as the chain transfer agent, 2,2’-azobis(isobutyronitrile) (AIBN) as the initiator, reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene was carried out. The influences of reaction temperature, reaction time, and the amounts of the initiator and chain transfer agent on the RAFT polymerization were investigated in terms of monomer conversion, average number molecular weight (Mn) and molecular weight distribution (Ð) of the obtained polymer. Monomer conversion and the Mn of the obtained polystyrene (PS) improved with an increase in the reaction temperature, and the polymerization kinetics exhibited a highly linear relationship, indicating a first-order reaction. When the amounts of the initiator and chain transfer agent were increased, it led to a decreased Mn of the produced PS. Meanwhile, the Ð of the PS was in a relatively narrow range (1.42-1.89). The chain-end functionality was further demonstrated by adding methyl methacrylate to the PS.

References

Chiefari J, Chong YK, Ercole F, et al. Living free-radical polymerization by reversible addition−fragmentation chain transfer: The RAFT Process. Macromolecules 1998; 31(16): 5559-62. https://doi.org/10.1021/ma9804951 DOI: https://doi.org/10.1021/ma9804951

Keddie DJ, Guerrero-Sanchez C, Moad G. The reactivity of N-vinylcarbazole in RAFT polymerization: trithiocarbonates deliver optimal control for the synthesis of homopolymers and block copolymers. Polym Chem 2013; 4(12): 3591-601. https://doi.org/10.1039/c3py00487b DOI: https://doi.org/10.1039/c3py00487b

Altintas O, Riazi K, Lee R, et al. RAFT-based polystyrene and polyacrylate melts under thermal and mechanical stress. Macromolecules 2013; 46(20): 8079-91. https://doi.org/10.1021/ma401749h DOI: https://doi.org/10.1021/ma401749h

Baum M, Brittain WJ. Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique. Macromolecules 2002; 35(3): 610-5. https://doi.org/10.1021/ma0112467 DOI: https://doi.org/10.1021/ma0112467

Şanal T, Oruç O, Öztürk T, et al. Synthesis of pH- and thermo-responsive poly (ε-caprolactone-b-4-vinyl benzyl-g-dimethyl amino ethyl methacrylate) brush type graft copolymers via RAFT polymerization. J Polym Res 2015; 22(2): 1-12. https://doi.org/10.1007/s10965-014-0640-z DOI: https://doi.org/10.1007/s10965-014-0640-z

Xue S, Yang H, Ma W, et al. Preparation and kinetic characterization of attapulgite grafted with poly(methyl methacrylate) via R-supported RAFT polymerization. J Polym Res 2017; 24(5): 83. https://doi.org/10.1007/s10965-017-1194-7 DOI: https://doi.org/10.1007/s10965-017-1194-7

Li G, Xu A, Geng B, et al. Synthesis and characterization of fluorinated diblock copolymer of 2,2,2-trifluoroethyl methacrylate and methyl methacrylate based on RAFT polymerzation. J Fluorine Chem 2014; 165: 132-7. https://doi.org/10.1016/j.jfluchem.2014.06.029 DOI: https://doi.org/10.1016/j.jfluchem.2014.06.029

Keddie DJ. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization. Chem Soc Rev 2014; 43(2): 496-505. https://doi.org/10.1039/C3CS60290G DOI: https://doi.org/10.1039/C3CS60290G

Liu Q, Yan C-N, Li Y-C, et al. Honeycomb-patterned porous films fabricated via self-organization of Tb complex-loaded amphiphilic copolymers. RSC Adv 2018; 8(35): 19524-31. https://doi.org/10.1039/C8RA02980F DOI: https://doi.org/10.1039/C8RA02980F

Kobben S, Ethirajan A, Junkers T. Synthesis of degradable poly(methyl methacrylate) star polymers via RAFT copolymerization with cyclic ketene acetals. J. Polym. Sci. Part A Polym. Chem. 2014; 52(11): 1633-41. https://doi.org/10.1002/pola.27180 DOI: https://doi.org/10.1002/pola.27180

Bray C, Peltier R, Kim H, et al. Anionic multiblock core cross-linked star copolymers via RAFT polymerization. Polym Chem 2017; 8(36): 5513-24. https://doi.org/10.1039/C7PY01062A DOI: https://doi.org/10.1039/C7PY01062A

Johnson IJ, Khosravi E, Musa OM, et al. Xanthates designed for the preparation of n-vinyl pyrrolidone-based linear and star architectures via RAFT Polymerization. J. Polym. Sci. Part A Polym. Chem. 2015; 53(6): 775-86. https://doi.org/10.1002/pola.27502 DOI: https://doi.org/10.1002/pola.27502

Zhou X, Zhu J, Xing M, et al. Synthesis and characters of hyperbranched poly(vinyl acetate) by RAFT polymeraztion. Eur Polym J 2011; 47(10): 1912-22. https://doi.org/10.1016/j.eurpolymj.2011.07.002 DOI: https://doi.org/10.1016/j.eurpolymj.2011.07.002

Barbey R, Perrier S. A facile route to functional hyperbranched polymers by combining reversible addition–fragmentation chain transfer polymerization, thiol–yne chemistry, and postpolymerization modification strategies. ACS Macro Lett 2013; 2(5): 366-70. https://doi.org/10.1021/mz400118g DOI: https://doi.org/10.1021/mz400118g

Semsarilar M, Ladmiral V, Perrier S. Highly branched and hyperbranched glycopolymers via reversible addition−fragmentation chain transfer polymerization and click chemistry. Macromolecules 2010; 43(3): 1438-43. https://doi.org/10.1021/ma902587r DOI: https://doi.org/10.1021/ma902587r

Moad G, Rizzardo E, Thang SH. Radical addition–fragmentation chemistry in polymer synthesis. Polymer 2008; 49(5): 1079-131. https://doi.org/10.1016/j.polymer.2007.11.020 DOI: https://doi.org/10.1016/j.polymer.2007.11.020

Roka N, Pitsikalis M. Statistical copolymers of N-vinylpyrrolidone and benzyl methacrylate via RAFT: Monomer reactivity ratios, thermal properties and kinetics of thermal decomposition. J Macromol Sci, Pure Appl Chem 2018; 55(3): 222-30. https://doi.org/10.1080/10601325.2017.1403858 DOI: https://doi.org/10.1080/10601325.2017.1403858

Vishwakarma S, Kumari A, Mitra K, et al. L-menthol-based xanthate mediator for RAFT polymerization of vinyl acetate. J Macromol Sci, Pure Appl Chem 2019. https://doi.org/10.1080/10601325.2019.1691457 DOI: https://doi.org/10.1080/10601325.2019.1691457

Benaglia M, Chiefari J, Chong YK, et al. Universal (switchable) RAFT agents. JACS 2009; 131(20): 6914-5. https://doi.org/10.1021/ja901955n DOI: https://doi.org/10.1021/ja901955n

Goto A, Sato K, Tsujii Y, et al. Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate. Macromolecules 2001; 34(3): 402-8. https://doi.org/10.1021/ma0009451 DOI: https://doi.org/10.1021/ma0009451

Kwak Y, Goto A, Tsujii Y, et al. A kinetic study on the rate retardation in radical polymerization of styrene with addition−fragmentation chain transfer. Macromolecules 2002; 35(8): 3026-9. https://doi.org/10.1021/ma0118421 DOI: https://doi.org/10.1021/ma0118421

Chiefari J, Mayadunne RTA, Moad CL, et al. Thiocarbonylthio compounds (SC(Z)S−R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT Polymerization). Effect of the activating group Z. Macromolecules 2003; 36(7): 2273-83. https://doi.org/10.1021/ma020883+ DOI: https://doi.org/10.1021/ma020883+

Adamy M, van Herk AM, Destarac M, et al. Influence of the chemical structure of MADIX agents on the RAFT polymerization of styrene. Macromolecules 2003; 36(7): 2293-301. https://doi.org/10.1021/ma025721s DOI: https://doi.org/10.1021/ma025721s

Zhu J, Zhu XL, Zhou D. "Living"/controlled free radical polymerization using bis(thionaphthoyl) disulfide as a source of RAFT agent. J Macromol Sci, Pure Appl Chem 2004; A41(7): 827-38. https://doi.org/10.1081/MA-120037345 DOI: https://doi.org/10.1081/MA-120037345

Destarac M, Bzducha W, Taton D, et al. Xanthates as chain-transfer agents in controlled radical polymerization (MADIX): Structural effect of the o-alkyl group. Macromol Rapid Commun 2002; 23(17): 1049-54. https://doi.org/10.1002/marc.200290002 DOI: https://doi.org/10.1002/marc.200290002

Destarac M, Brochon C, Catala JM, et al. Macromolecular design via the interchange of xanthates (MADIX): Polymerization of styrene with O-ethyl xanthates as controlling agents. Macromol Chem Phys 2002; 203(16): 2281-9. https://doi.org/10.1002/macp.200290002 DOI: https://doi.org/10.1002/macp.200290002

Patel VK, Mishra AK, Vishwakarma NK, et al. (S)-2-(ethyl propionate)-(o-ethyl xanthate) and (s)-2-(ethyl isobutyrate)-(o-ethyl xanthate)-mediated RAFT polymerization of n-vinylpyrrolidone. Polym Bull 2010; 65(2): 97-110. https://doi.org/10.1007/s00289-009-0185-1 DOI: https://doi.org/10.1007/s00289-009-0185-1

Downloads

Published

2020-06-10

How to Cite

Xu, X. ., Xu, X. ., Zeng, Y. ., & Zhang, F. . (2020). RAFT Polymerization of Styrene with Potassium Ethylxanthate as the Chain Transfer Agent. Journal of Research Updates in Polymer Science, 9, 50–57. https://doi.org/10.6000/1929-5995.2020.09.05

Issue

Section

Articles