Extreme Heterogeneity in Global Prevalence Meta-Analyses: Evaluating Current Practices and Exploring Bayesian Alternatives - an Umbrella Review

Authors

  • Víctor Juan Vera-Ponce Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza deAmazonas (UNTRM), Amazonas, Perú
  • Jhosmer Ballena-Caicedo Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza deAmazonas (UNTRM), Amazonas, Perú
  • Lupita Ana Maria Valladolid-Sandoval Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza deAmazonas (UNTRM), Amazonas, Perú
  • Fiorella E. Zuzunaga Montoya Universidad Continental, Lima, Perú

DOI:

https://doi.org/10.6000/1929-6029.2026.15.01

Keywords:

Meta-Analysis, Prevalence, Epidemiologic Methods, Biostatistics, Systematic Reviews, Heterogeneity, Publication Bias, Research Design, Evidence-Based Medicine, Public Health

Abstract

Introduction: Global prevalence meta-analyses often exhibit extreme heterogeneity (I² > 90%), yet criteria designed for clinical trials, where homogeneity is desirable, continue to be applied without recognizing that in prevalence studies, variability reflects real differences between populations.

Objective: To document the magnitude of heterogeneity in global prevalence meta-analyses, evaluate the methodological strategies employed for its exploration and management, and explore through illustrative application how Bayesian methods—rarely employed in prevalence meta-analyses—compare with standard frequentist approaches.

Methods: Umbrella review conducted according to PRIOR guidelines. Systematic search in SCOPUS for systematic reviews with global/worldwide prevalence meta-analyses published between 2015-2025. Data were extracted on I², statistical models, subgroup analyses, sensitivity analyses, meta-regression, and prediction intervals. Three meta-analyses were randomly selected for illustrative Bayesian re-analysis using hierarchical models with weakly informative priors, and the results were compared with those from frequentist approaches.

Results: Of 53 included meta-analyses, 52 (98.1%) presented I²≥75%, 47 (88.7%) I²≥90%, and 34 (64.2%) I²>99%. Management strategies showed a decreasing implementation rate: subgroup analyses (96.2%), sensitivity analyses (64.2%), meta-regression (34.0%), and prediction intervals (5.8%). Among studies with I²≥75%, 63.5% provided explicit justification for proceeding with pooling. The illustrative Bayesian analysis of three randomly selected studies demonstrated excellent concordance with frequentist estimates (differences <0.1%), while providing additional uncertainty quantification for heterogeneity parameters unavailable from standard approaches.

Conclusions: Extreme heterogeneity constitutes the norm in global prevalence meta-analyses. The underutilization of prediction intervals (5.8%) and meta-regression (34.0%) represents the critical gap for improving statistical rigor. An exploratory Bayesian analysis demonstrated concordance with frequentist estimates, while providing additional uncertainty quantification. This illustrates that alternative methods are feasible, though their value lies primarily in specific scenarios rather than routine application. Prevalence-specific frameworks should recognize high heterogeneity as an expected characteristic requiring comprehensive exploration rather than elimination.

References

Borges Migliavaca C, Stein C, Colpani V, Barker TH, Munn Z, Falavigna M, et al. How are systematic reviews of prevalence conducted? A methodological study. BMC Med Res Methodol 2020; 20(1): 96.

Barker TH, Migliavaca CB, Stein C, Colpani V, Falavigna M, Aromataris E, et al. Conducting proportional meta-analysis in different types of systematic reviews: a guide for synthesisers of evidence. BMC Med Res Methodol 2021; 21(1): 189.

Migliavaca CB, Stein C, Colpani V, Barker TH, Ziegelmann PK, Munn Z, et al. Meta-analysis of prevalence: I2 statistic and how to deal with heterogeneity. Res Synth Methods 2022; 13(3): 363-7.

Munn Z, Stern C, Aromataris E, Lockwood C, Jordan Z. What kind of systematic review should I conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC Med Res Methodol 2018; 18(1): 5.

Schwarzer G, Chemaitelly H, Abu-Raddad LJ, Rücker G. Seriously misleading results using inverse of Freeman-Tukey double arcsine transformation in meta-analysis of single proportions. Res Synth Methods 2019; 10(3): 476-83.

Ioannidis JPA. Interpretation of tests of heterogeneity and bias in meta-analysis. J Eval Clin Pract 2008; 14(5): 951-7.

Higgins JPT. Commentary: Heterogeneity in meta-analysis should be expected and appropriately quantified. Int J Epidemiol 2008; 37(5): 1158-60.

Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Methodol 2008; 8: 79.

Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327(7414): 557-60.

Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health 2013; 67(11): 974-8.

IntHout J, Ioannidis JPA, Rovers MM, Goeman JJ. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open 2016; 6(7): e010247.

Gates M, Gates A, Pieper D, Fernandes RM, Tricco AC, Moher D, et al. Reporting guideline for overviews of reviews of healthcare interventions: development of the PRIOR statement. BMJ 2022; 378: e070849.

Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017; 358: j4008.

Röver C. Bayesian random-effects meta-analysis using the bayesmeta R package. J Stat Softw 2020; 93(6): 1-51.

Polson NG, Scott JG. On the half-Cauchy prior for a global scale parameter. Bayesian Anal 2012; 7(4): 887-902.

Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: A probabilistic programming language. J Stat Softw 2017; 76(1): 1-32.

Albadrani MS, Tobaiqi MA, Muaddi MA, Eltahir HM, Abdoh ES, Aljohani AM, et al. A global prevalence of electronic nicotine delivery systems (ENDS) use among students: a systematic review and meta-analysis of 4,189,145 subjects. BMC Public Health 2024; 24(1): 3311.

Wikswo ME, Kambhampati AK, Mattison CP, Chhabra P, Olojo O, Rana T, et al. A systematic review and meta-analysis of the global prevalence of human enteric adenovirus infections. J Infect Public Health 2025; 18(7): 102800.

Kinner SA, Snow K, Wirtz AL, Altice FL, Beyrer C, Dolan K. Age-Specific Global Prevalence of Hepatitis B, Hepatitis C, HIV, and Tuberculosis Among Incarcerated People: A Systematic Review. J Adolesc Health 2018; 62(3S): S18-26.

Wei J, Zhu X, Liu J, Gao Y, Liu X, Wang K, et al. Estimating global prevalence of mild cognitive impairment and dementia in elderly with overweight, obesity, and central obesity: A systematic review and meta-analysis. Obes Rev 2025; 26(5): e13882.

Al Wachami N, Guennouni M, Iderdar Y, Boumendil K, Arraji M, Mourajid Y, et al. Estimating the global prevalence of chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. BMC Public Health 2024; 24(1): 297.

Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J Glob Health 2015; 5(2): 020415.

Xie X, Pei J, Zhang L, Wu Y. Global birth prevalence of major congenital anomalies: a systematic review and meta-analysis. BMC Public Health 2025; 25(1): 449.

Song P, Xu Y, Zha M, Zhang Y, Rudan I. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors. J Glob Health 2025; 9(1): 010427.

Fall A, Kenmoe S, Ebogo-Belobo JT, Mbaga DS, Bowo-Ngandji A, Foe-Essomba JR, et al. Global prevalence and case fatality rate of Enterovirus D68 infections, a systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16(2): e0010073.

Sulaiman SK, Isma’il Tsiga-Ahmed F, Musa MS, Makama BT, Sulaiman AK, Abdulaziz TB. Global prevalence and correlates of mpox vaccine acceptance and uptake: a systematic review and meta-analysis. Commun Med (Lond) 2024; 4: 136.

Suleiman AS, Bhattacharya P, Islam MA. Global prevalence and dynamics of mecA and mecC genes in MRSA: Meta-meta-analysis, meta-regression, and temporal investigation. J Infect Public Health 2025; 18(7): 102802.

Hu X, Chen Y, Shen Y, Tian R, Sheng Y, Que H. Global prevalence and epidemiological trends of Hashimoto’s thyroiditis in adults: A systematic review and meta-analysis. Front Public Health 2022; 10: 1020709.

White SJ, Sin J, Sweeney A, Salisbury T, Wahlich C, Montesinos Guevara CM, et al. Global Prevalence and Mental Health Outcomes of Intimate Partner Violence Among Women: A Systematic Review and Meta-Analysis. Trauma, Violence, & Abuse 2024; 25(1): 494-511.

Fajar JK, Sallam M, Soegiarto G, Sugiri YJ, Anshory M, Wulandari L, et al. Global Prevalence and Potential Influencing Factors of COVID-19 Vaccination Hesitancy: A Meta-Analysis. Vaccines (Basel) 2022; 10(8): 1356.

Delie AM, Bogale EK, Anagaw TF, Tiruneh MG, Fenta ET, Adal O, et al. Global prevalence and predictors of scabies among prisoners: systematic review and meta-analysis. BMC Public Health 2024; 24(1): 1894.

Syed S, Ashwick R, Schlosser M, Jones R, Rowe S, Billings J. Global prevalence and risk factors for mental health problems in police personnel: a systematic review and meta-analysis. Occup Environ Med 2020; 77(11): 737-47.

Alshehri AA, Irekeola AA. Global prevalence of alkhumra hemorrhagic fever virus infection: The first meta-analysis and systematic review. J Infect Public Health 2024; 17(6): 986-93.

Holland C, Sepidarkish M, Deslyper G, Abdollahi A, Valizadeh S, Mollalo A, et al. Global prevalence of Ascaris infection in humans (2010-2021): a systematic review and meta-analysis. Infect Dis Poverty 2022; 11(1): 113.

Whitten T, Tzoumakis S, Green MJ, Dean K. Global Prevalence of Childhood Exposure to Physical Violence within Domestic and Family Relationships in the General Population: A Systematic Review and Proportional Meta-Analysis. Trauma Violence Abuse 2024; 25(2): 1411-30.

Ukwishaka J, Ndayishimiye Y, Destine E, Danwang C, Kirakoya-Samadoulougou F. Global prevalence of coronavirus disease 2019 reinfection: a systematic review and meta-analysis. BMC Public Health 2023; 23(1): 778.

Salari N, Kanjoori AH, Hosseinian-Far A, Hasheminezhad R, Mansouri K, Mohammadi M. Global prevalence of drug-resistant tuberculosis: a systematic review and meta-analysis. Infectious Diseases of Poverty 2023; 12(1): 57.

Zhang P, Hao C, Di X, Chuizhao X, Jinsong L, Guisen Z, et al. Global prevalence of norovirus gastroenteritis after emergence of the GII.4 Sydney 2012 variant: a systematic review and meta-analysis. Front Public Health 2024; 12: 1373322.

Shafiee A, Nakhaee Z, Bahri RA, Amini MJ, Salehi A, Jafarabady K, et al. Global prevalence of obesity and overweight among medical students: a systematic review and meta-analysis. BMC Public Health 2024; 24(1): 1673.

Li Y-J, Xie X-N, Lei X, Li Y-M, Lei X. Global prevalence of obesity, overweight and underweight in children, adolescents and adults with autism spectrum disorder, attention-deficit hyperactivity disorder: A systematic review and meta-analysis. Obes Rev 2020; 21(12): e13123.

Tolera ST, Gobena T, Assefa N, Geremew A. Global prevalence of occupational injuries among sanitation workers: a systematic review and meta-analysis. Front Public Health 2024; 12: 1425904.

Taher MK, Salzman T, Banal A, Morissette K, Domingo FR, Cheung AM, et al. Global prevalence of post-COVID-19 condition: a systematic review and meta-analysis of prospective evidence. Health Promot Chronic Dis Prev Can 2025; 45(3): 112-38.

Sheng Y, Jin L-Y, Li N, Zhang Y, Shi Y-J. Global prevalence of psittacosis in outbreaks: a systematic review and meta-analysis. BMC Public Health 2025; 25(1): 2010.

Engku Abd Rahman ENS, Irekeola AA, Elmi AH, Chua WC, Chan YY. Global prevalence patterns and distribution of Vibrio cholerae: A systematic review and meta-analysis of 176,740 samples. J Infect Public Health 2024; 17(11): 102558.

Niu X, Zhu L, Xu Y, Zhang M, Hao Y, Ma L, et al. Global prevalence, incidence, and outcomes of alcohol related liver diseases: a systematic review and meta-analysis. BMC Public Health 2023; 23(1): 859.

Fang Y, Liu F, Zhang X, Chen L, Liu Y, Yang L, et al. Mapping global prevalence of menopausal symptoms among middle-aged women: a systematic review and meta-analysis. BMC Public Health 2024; 24(1): 1767.

Renzi E, Baccolini V, Migliara G, Bellotta C, Ceparano M, Donia P, et al. Mapping the Prevalence of COVID-19 Vaccine Acceptance at the Global and Regional Level: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10(9): 1488.

Jafari A, Rajabi A, Gholian-Aval M, Peyman N, Mahdizadeh M, Tehrani H. National, regional, and global prevalence of cigarette smoking among women/females in the general population: a systematic review and meta-analysis. Environ Health Prev Med 2021; 26(1): 5.

Bouqoufi A, Laila L, Boujraf S, Hadj FAE, Razine R, Abouqal R, et al. Prevalence and associated factors of self-medication in worldwide pregnant women: systematic review and meta-analysis. BMC Public Health 2024; 24(1): 308.

Dagnaw M, Muche AA, Geremew BM, Gezie LD. Prevalence and burden of HBV-HIV co-morbidity: a global systematic review and meta-analysis. Front Public Health 2025; 13: 1565621.

Muche AA, Olayemi OO, Gete YK. Prevalence and determinants of gestational diabetes mellitus in Africa based on the updated international diagnostic criteria: a systematic review and meta-analysis. Arch Public Health 2019; 77: 36.

Dillard LK, Arunda MO, Lopez-Perez L, Martinez RX, Jiménez L, Chadha S. Prevalence and global estimates of unsafe listening practices in adolescents and young adults: a systematic review and meta-analysis. BMJ Glob Health 2022; 7(11): e010501.

Pan Y, Lin X, Liu J, Zhang S, Zeng X, Chen F, et al. Prevalence of Childhood Sexual Abuse Among Women Using the Childhood Trauma Questionnaire: A Worldwide Meta-Analysis. Trauma Violence Abuse 2021; 22(5): 1181-91.

Escobar N, Plugge E. Prevalence of human papillomavirus infection, cervical intraepithelial neoplasia and cervical cancer in imprisoned women worldwide: a systematic review and meta-analysis. J Epidemiol Community Health 2020; 74(1): 95-102.

Kip A, Valencia S, Glunz E, Lowe SR, Tam K-P, Morina N. Prevalence of mental disorders in adult populations from the Global South following exposure to natural hazards: a meta-analysis. Epidemiol Psychiatr Sci 2024; 33: e68.

Alemayehu TT, Wassie YA, Bekalu AF, Tegegne AA, Ayenew W, Tadesse G, et al. Prevalence of potential drug-drug interactions and associated factors among elderly patients in Ethiopia: a systematic review and meta-analysis. Glob Health Res Policy 2024; 9(1): 46.

Zheng Y, Ye K, Ying M, He Y, Yu Q, Lan L, et al. Syphilis epidemic among men who have sex with men: A global systematic review and meta-analysis of prevalence, incidence, and associated factors. J Glob Health 2024; 14: 04004.

Faustino R, Faria M, Teixeira M, Palavra F, Sargento P, do Céu Costa M. Systematic review and meta-analysis of the prevalence of coronavirus: One health approach for a global strategy. One Health 2022; 14: 100383.

Ahmadi Gharaei H, Fararouei M, Mirzazadeh A, Sharifnia G, Rohani-Rasaf M, Bastam D, et al. The global and regional prevalence of hepatitis C and B co-infections among prisoners living with HIV: a systematic review and meta-analysis. Infect Dis Poverty 2021; 10(1): 93.

Song P, Wu J, Cao J, Sun W, Li X, Zhou T, et al. The global and regional prevalence of restless legs syndrome among adults: A systematic review and modelling analysis. J Glob Health 2024; 14: 04113.

Shariati A, Dadashi M, Chegini Z, van Belkum A, Mirzaii M, Khoramrooz SS, et al. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2020; 9(1): 56.

Hajikhani B, Goudarzi M, Kakavandi S, Amini S, Zamani S, van Belkum A, et al. The global prevalence of fusidic acid resistance in clinical isolates of Staphylococcus aureus: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2021; 10(1): 75.

Hasanpour AH, Sepidarkish M, Mollalo A, Ardekani A, Almukhtar M, Mechaal A, et al. The global prevalence of methicillin-resistant Staphylococcus aureus colonization in residents of elderly care centers: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2023; 12(1): 4.

Armoon B, Mohammadi R, Griffiths MD. The Global Prevalence of Non-suicidal Self-injury, Suicide Behaviors, and Associated Risk Factors Among Runaway and Homeless Youth: A Meta-analysis. Community Ment Health J 2024; 60(5): 919-44.

Salari N, Heidarian P, Abdolmaleki A, Salim K, Hashemian SH, Daneshkhah A, et al. The global prevalence of single-child families with emphasis on influential factors: a comprehensive systematic review and meta-analysis. Popul Health Metr 2025; 23(1): 25.

Behniafar H, Sepidarkish M, Tadi MJ, Valizadeh S, Gholamrezaei M, Hamidi F, et al. The global prevalence of Trichuris trichiura infection in humans (2010-2023): A systematic review and meta-analysis. J Infect Public Health 2024; 17(5): 800-9.

Song P, Zha M, Yang Q, Zhang Y, Li X, Rudan I, et al. The prevalence of adult attention-deficit hyperactivity disorder: A global systematic review and meta-analysis. J Glob Health 2021; 11: 04009.

Dai X, Chu X, Qi G, Yuan P, Zhou Y, Xiang H, et al. Worldwide Perinatal Intimate Partner Violence Prevalence and Risk Factors for Post-traumatic Stress Disorder in Women: A Systematic Review and Meta-analysis. Trauma Violence Abuse 2024; 25(3): 2363-76.

Román-Gálvez RM, Martín-Peláez S, Fernández-Félix BM, Zamora J, Khan KS, Bueno-Cavanillas A. Worldwide Prevalence of Intimate Partner Violence in Pregnancy. A Systematic Review and Meta-Analysis. Front Public Health 2021; 9: 738459.

Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc 2015; 13(3): 147-53.

Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ 2011; 342: d549.

Partlett C, Riley RD. Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation. Stat Med 2017; 36(2): 301-17.

Nagashima K, Noma H, Furukawa TA. Prediction intervals for random-effects meta-analysis: A confidence distribution approach. Stat Methods Med Res 2019; 28(6): 1689-702.

Cordero CP, Dans AL. Key concepts in clinical epidemiology: detecting and dealing with heterogeneity in meta-analyses. J Clin Epidemiol 2021; 130: 149-51.

Hoffmann F, Eggers D, Pieper D, Zeeb H, Allers K. An observational study found large methodological heterogeneity in systematic reviews addressing prevalence and cumulative incidence. J Clin Epidemiol 2020; 119: 92-9.

Ades AE, Lu G, Higgins JPT. The interpretation of random-effects meta-analysis in decision models. Med Decis Making 2005; 25(6): 646-54.

Deeks JJ, Higgins JPT, Altman DG, McKenzie JE, Veroniki AA, editors. Chapter 10: Analysing data and undertaking meta-analyses. In: Cochrane Handbook for Systematic Reviews of Interventions 2024.

IntHout J, Ioannidis JPA, Rovers MM, Goeman JJ. Plea for routinely presenting prediction intervals in meta-analysis 2016 [cited 9 November 2025].

Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21(11): 1539-58.

Spineli LM, Pandis N. Prediction interval in random-effects meta-analysis. Am J Orthod Dentofacial Orthop 2020; 157(4): 586-8.

Borenstein M. How to understand and report heterogeneity in a meta-analysis: The difference between I-squared and prediction intervals. Integr Med Res 2023; 12(4): 101014.

Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw 2010; 36(3): 1-48.

Harris RJ, Bradburn MJ, Deeks JJ, Harbord RM, Altman DG, Sterne JAC. Metan: fixed- and random-effects meta-analysis. Stata J 2008; 8(1): 3-28.

Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken and interpreted? Stat Med 2002; 21(11): 1559-73.

Patsopoulos NA, Evangelou E, Ioannidis JPA. Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol 2008; 37(5): 1148-57.

Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 2010; 340: c221.

Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res 2001; 10(4): 277-303.

Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials and Health-Care Evaluation. John Wiley & Sons; 2004.

Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods 2016; 7(1): 55-79.

Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR. How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Stat Med 2005; 24(15): 2401-28.

Bürkner PC. brms: An R package for Bayesian multilevel models using Stan. J Stat Softw 2017; 80(1): 1-28.

DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7(3): 177-88.

IntHout J, Ioannidis JPA, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol 2014; 14: 25.

Röver C, Friede T. Using the bayesmeta R package for Bayesian random-effects meta-regression. Comput Methods Programs Biomed 2023; 229: 107303.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; n71.

Downloads

Published

2026-01-30

How to Cite

Vera-Ponce, V. J. ., Ballena-Caicedo, J. ., Valladolid-Sandoval, L. A. M. ., & Zuzunaga Montoya, F. E. . (2026). Extreme Heterogeneity in Global Prevalence Meta-Analyses: Evaluating Current Practices and Exploring Bayesian Alternatives - an Umbrella Review. International Journal of Statistics in Medical Research, 15, 1–16. https://doi.org/10.6000/1929-6029.2026.15.01

Issue

Section

General Articles

Most read articles by the same author(s)

1 2 > >>