An Independent and External Validation of the ACC NCDR Bleeding Risk Score among a National Multi-Site Community Hospital Registry of Cardiac Interventions

Authors

  • David R. Dobies Regional Cardiology Associates, Grand Blanc, MI, USA
  • Kimberly R. Barber Genesys Regional Medical Center, Office of Research, Grand Blanc, MI, USA
  • Amanda L. Cohoon Genesys Regional Medical Center, Cardiac Cath Lab, Grand Blanc, MI, USA

DOI:

https://doi.org/10.6000/1929-6029.2014.03.02.9

Keywords:

Major bleeding, bleeding risk model, anticoagulant, percutaneous coronary intervention, cardiovascular

Abstract

Background: An accurate tool with good discrimination for bleeding would be useful to clinicians for improved management of all their patients. Bleeding risk models have been published but not externally validated in independent clinical datasets. We chose the NCDR PCI score to validate within a large, multi-site community dataset. The aim of the study was to determine the diagnostic utility of this bleeding risk score tool.

Methods: This is a large-scale retrospective analysis utilizing American College of Cardiology data from a 37-hospital health system. The central repository of PCI procedures between 6-1-2009 and 6-30-2012 was utilized to validate the NCDR PCI bleeding risk score (BRS) among 4693 patients. The primary endpoint was major bleeding. Discriminant analysis calculating the receiver operating characteristic curve was performed.

Results: There were 143 (3.0%) major bleeds. Mean bleeding risk score was 14.7 (range 3 – 42). Incidence of bleeding by risk category: low (0.5%), intermediate (1.7%), and high risk (7.6%). Patients given heparin had 113 (3.7%) major bleeds and those given bivalirudin had 30 (2.1%) major bleeds. Tool accuracy was poor to fair (AUC 0.78 heparin, 0.65 bivalirudin). Overall accuracy was 0.71 (CI: 0.66-0.76). Accuracy did not improve when confined to just the intermediate risk group (AUC 0.58; CI: 0.55-0.67).

Conclusion: Bleeding risk tools have low predictive value. Adjustment for anticoagulation use resulted in poor discrimination because bivalirudin differentially biases outcomes toward no bleeding. The current state of bleeding risk tools provides little support for diagnostic utility in regards to major bleeding and therefore have limited clinical applicability.

Author Biographies

Kimberly R. Barber, Genesys Regional Medical Center, Office of Research, Grand Blanc, MI, USA

Office of Research

Amanda L. Cohoon, Genesys Regional Medical Center, Cardiac Cath Lab, Grand Blanc, MI, USA

Cardiac Cath Lab

References

Abu-Assi E, Raposeiras-Roubin S, Lear P, et al. Comparing the predictive validity of three contemporary bleeding risk scores in acute coronary syndrome. Acute Cardiov Care 2012; 0: 1-10. DOI: https://doi.org/10.1177/2048872612453924

Subherwal S, Back RG, Chen AY, et al. Baseline risk of major bleeding in non-ST-segment-elevation myocardial infarction: the CRUSADE (Can Rapid risk stratification of Unstable angina patients Suppress Adverse outcomes with Early implementation of the ACC/AHA Guidelines) Bleeding Score. Circulation 2009; 119: 1873-82. http://dx.doi.org/10.1161/CIRCULATIONAHA.108.828541 DOI: https://doi.org/10.1161/CIRCULATIONAHA.108.828541

Mehran R, Pocock S, Nikolsky E, et al. A risk score to predict bleeding in patients with acute coronary syndromes. JACC 2010; 55: 2556-66. http://dx.doi.org/10.1016/j.jacc.2009.09.076 DOI: https://doi.org/10.1016/j.jacc.2009.09.076

Hamm CW, Bassand JP, Agewall S, et al. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2011; 32: 2999-54. http://dx.doi.org/10.1093/eurheartj/ehr236 DOI: https://doi.org/10.1093/eurheartj/ehr236

Matthews R, Peterson ED, Chen AY, et al. In-hospital major bleeding during ST-elevation and non-ST-elevation myocardial infarction care: derivation and validation of a model from the ACTION Registry-GWTG. Am J Cardiol 2011; 107: 1136-43. http://dx.doi.org/10.1016/j.amjcard.2010.12.009 DOI: https://doi.org/10.1016/j.amjcard.2010.12.009

Rao S, McCoy L, Spertus J, et al. An updated bleeding model to predict the risk of post-procedure bleeding among patients undergoing percutaneous coronary intervention. JACC: CardiolIntv 2013; 6: 897-904. http://dx.doi.org/10.1016/j.jcin.2013.04.016

Rao SV, O’Grady K, Pieper KS, et al. Impact of bleeding severity on clinical outcomes among patients with acute coronary syndromes. Am J Cardiol 2005; 96: 1200-206. http://dx.doi.org/10.1016/j.amjcard.2005.06.056 DOI: https://doi.org/10.1016/j.amjcard.2005.06.056

Eikelboom JW, Mehta SR, Anand SS, Xie C, Fox KA, Yusuf S. Adverse impact of bleeding on prognosis in patients with acute coronary syndromes. Circulation 2006; 114: 774-82. http://dx.doi.org/10.1161/CIRCULATIONAHA.106.612812 DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.612812

Moscucci M, Fox KA, Cannon CP, et al. Predictors of major bleeding in acute coronary syndromes: the Global Registry of Acute Coronary Events (GRACE). Eur Heart J 2003; 24: 1815-23. http://dx.doi.org/10.1016/S0195-668X(03)00485-8 DOI: https://doi.org/10.1016/S0195-668X(03)00485-8

Baber U, Kovacic J, Kini AS, Sharma SK, Dangas G, and Mehran R. How serious a problem is bleeding in patients with acute coronary syndromes? Curr Cardiol Rep 2011; 13: 312-19. http://dx.doi.org/10.1007/s11886-011-0192-3 DOI: https://doi.org/10.1007/s11886-011-0192-3

Kugelmass AD, Cohen DJ, Brown PP, Simon AW, Becker ER, and Culler SD. Hospital resources consumed in treating complications associated with percutaneous coronary interventions. Am J Cardiol 2006; 97: 322-27. http://dx.doi.org/10.1016/j.amjcard.2005.08.047 DOI: https://doi.org/10.1016/j.amjcard.2005.08.047

Manoukian SV. Predictors and impact of bleeding complications in percutaneous coronary intervention, acute coronary syndromes, and ST-segment elevation myocardial infarction. Am J Cardiol 2009; 104: 9C-15C. http://dx.doi.org/10.1016/j.amjcard.2009.06.020 DOI: https://doi.org/10.1016/j.amjcard.2009.06.020

Mehta S, Fruckin A, Lindsey J, et al. Bleeding in patients undergoing percutaneous coronary intervention: The development of a clinical risk algorithm from the national cardiovascular data registry. Circ: CardiovIntv 2009; 2: 222-29. DOI: https://doi.org/10.1161/CIRCINTERVENTIONS.108.846741

Barra S, Providencia R, Caetano F, Almeida I, et al. BLEED-myocardial infarction score: predicting mid-term post-discharge bleeding events. World J Cardiol 2013; 5: 196-206. http://dx.doi.org/10.4330/wjc.v5.i6.196 DOI: https://doi.org/10.4330/wjc.v5.i6.196

Nikolsky E, Mehran R, Dangas G, et al. Development and validation of a prognostic risk score for major bleeding in patients undergoing percutaneous coronary intervention via the femoral approach. Eur Heart J 2007; 28: 1936-45. http://dx.doi.org/10.1093/eurheartj/ehm194 DOI: https://doi.org/10.1093/eurheartj/ehm194

Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijins HJ, Lip GY. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the EURO Heart Survey. Chest 2010; 138: 1093-100. http://dx.doi.org/10.1378/chest.10-0134 DOI: https://doi.org/10.1378/chest.10-0134

Rao S, McCoy L, Spertus J, et al. An updated bleeding model to predict the risk of post-procedure bleeding among patients undergoing percutaneous coronary intervention. JACC: CardiolIntv 2013; 6: 897-904. http://dx.doi.org/10.1016/j.jcin.2013.04.016 DOI: https://doi.org/10.1016/j.jcin.2013.04.016

A-Levey AS, Stevens LA, Schmid CH, et al. CKD-DPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150(9): 604-12. http://dx.doi.org/10.7326/0003-4819-150-9-200905050-00006 DOI: https://doi.org/10.7326/0003-4819-150-9-200905050-00006

Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29-36. DOI: https://doi.org/10.1148/radiology.143.1.7063747

Ducrocq G, Wallace JS, Baron G, et al. Risk score to predict serious bleeding in stable outpatients with or at risk of atherothrombosis. Eur Heart J 2010; 31: 1257-65. http://dx.doi.org/10.1093/eurheartj/ehq021 DOI: https://doi.org/10.1093/eurheartj/ehq021

Knaus WA, Wagner DP, Draper EA, et al. The APACHE IIIPrognositc System: risk prediction of hospital mortality for critically ill hospitalized adults. CHEST 1991; 100: 1619-36. http://dx.doi.org/10.1378/chest.100.6.1619 DOI: https://doi.org/10.1378/chest.100.6.1619

Joe BH, Jo U, Kim HS, et al. APACHE II score, rather than cardiac function, may predict poor prognosis in patients with stress-induced cardiomyopathy. J Korean Med Sci 2012; 27: 52-57. http://dx.doi.org/10.3346/jkms.2012.27.1.52 DOI: https://doi.org/10.3346/jkms.2012.27.1.52

White HD, Aylward PE, Gallo R, et al. STEEPLE Investigators. Hematomas of at least 5 cm and outcomes in patients undergoing elective percutaneous coronary intervention: insights from the SafeTy and Efficacy of Enoxaparin in PCI patients, an internationaL randomized Evaluation (STEEPLE) trial. Am Heart J 2010; 159: 110-6. http://dx.doi.org/10.1016/j.ahj.2009.10.034 DOI: https://doi.org/10.1016/j.ahj.2009.10.034

Downloads

Published

2014-05-14

How to Cite

Dobies, D. R., Barber, K. R., & Cohoon, A. L. (2014). An Independent and External Validation of the ACC NCDR Bleeding Risk Score among a National Multi-Site Community Hospital Registry of Cardiac Interventions. International Journal of Statistics in Medical Research, 3(2), 153–160. https://doi.org/10.6000/1929-6029.2014.03.02.9

Issue

Section

General Articles

Most read articles by the same author(s)