A Nonparametric Bayesian Approach to Estimating Malaria Prophylactic Effect After Two Treatments

Authors

  • Cletus Kwa Kum Department of Statistics, Stockholm University, Sweden
  • Daniel Thorburn Department of Statistics, Stockholm University, Sweden
  • Gebrenegus Ghilagaber Department of Statistics, Stockholm University, Sweden
  • Pedro Gil Drug Resistance Unit, Division of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
  • Anders Björkman Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden

DOI:

https://doi.org/10.6000/1929-6029.2013.02.02.01

Keywords:

Bayesian clinical trial, conditional survival posterior, drug resistance, efficacy, recurrence time, uncomplicated malaria, sulfadoxine-pyrimethamine

Abstract

Two treatment regimens for malaria are compared in their abilities to cure and combat reinfection. Bayesian analysis techniques are used to compare two typical treatment therapies for uncomplicated malaria in children under five years, not only in their power to resist recrudescence, but also how long they can postpone recrudescence or reinfection in case of failure. We present a new way of analysing this type of data using Markov Chain Monte Carlo techniques. This is done using data from clinical trials at two different centres. The results which give the full posterior distributions show that artemisinin-based combination therapy is more efficacious than sulfadoxine-pyrimethamine. It both reduced the risk of recrudescence and delayed the time until recrudescence.

Author Biographies

Cletus Kwa Kum, Department of Statistics, Stockholm University, Sweden

Department of Statistics, University of
Dschang

Daniel Thorburn, Department of Statistics, Stockholm University, Sweden

Department ofStatistics

Gebrenegus Ghilagaber, Department of Statistics, Stockholm University, Sweden

Department of Statistics

Pedro Gil, Drug Resistance Unit, Division of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden

Drug Resistance Unit, Division of Pharmacogenetics, Department of Physiology and Pharmacology

Anders Björkman, Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden

Division of Infectious Diseases

References

Spiegelhalter DJ, Freedman LS, Parmar MKB. Bayesian approaches to randomized trials. J Roy Statist Soc Ser A 1994; 357-16. http://dx.doi.org/10.2307/2983527 DOI: https://doi.org/10.2307/2983527

Fisher LD. Comments on: Bayesian and frequentist analysis and interpretation of clinical trials. Control Clin Trials 1996; 17(5): 423-34. http://dx.doi.org/10.1016/S0197-2456(96)00043-8 DOI: https://doi.org/10.1016/S0197-2456(96)00043-8

Freedman L. Bayesian statistical methods. BMJ 1996; 313(7057): 569-70. http://dx.doi.org/10.1136/bmj.313.7057.569 DOI: https://doi.org/10.1136/bmj.313.7057.569

Woodworth GG. Biostatistics: A Bayesian Introduction. Wiley-Interscience 2004; vol. 499.

von Seidlein L, Milligan P, Pinder M, Bojang K, Anyalebechi C, Gosling R, et al. Efficacy of artesunate plus pyrimethamine-sulphadoxine for uncomplicated malaria in Gambian children: a double-blind, randomised, controlled trial. Lancet 2000; 355(9201): 352-57. http://dx.doi.org/10.1016/S0140-6736(99)10237-X DOI: https://doi.org/10.1016/S0140-6736(99)10237-X

Zwang J, Olliaro P, Barennes H, Bonnet M, Brasseur P, Bukirwa H, et al. Efficacy of artesunate-amodiaquine for treating uncomplicated falciparum malaria in sub-Saharan Africa: a multi-centre analysis. Malar J 2009; 8(1): 203. http://dx.doi.org/10.1186/1475-2875-8-203 DOI: https://doi.org/10.1186/1475-2875-8-203

Mutabingwa TK. Artemisinin-based combination therapies (ACTs): Best hope for malaria treatment but inaccessible to the needy. Acta Trop 2005; 95(3): 305-15. http://dx.doi.org/10.1016/j.actatropica.2005.06.009 DOI: https://doi.org/10.1016/j.actatropica.2005.06.009

Mårtensson A, Strömberg J, Sisowath C, Msellem MI, Gil JP, Montgomery SM, et al. Efficacy of artesunate plus amodiaquine versus that ofartemether-lumefantrine for the treatment of uncomplicated childhood Plasmodium falciparum malaria in Zanzibar, Tanzania. Clin Infect Dis 2005; 41(8): 1079-86. http://dx.doi.org/10.1086/444460 DOI: https://doi.org/10.1086/444460

Mårtensson A, Ngasala B, Ursing J, Veiga MI, Wiklund L, Membi C, et al. Influence of consecutive-day blood sampling on polymerase chain reaction-adjusted parasitological cure rates in an antimalarial-drug trial conducted in Tanzania. J Infect Dis 2007; 195(4): 597-601. http://dx.doi.org/10.1086/510910 DOI: https://doi.org/10.1086/510910

Kum CK. Bayesian analysis of two malaria treatments and probability modeling of malaria parasite genotypes, (PhLic Thesis). Stockholm University 2009.

Greenhouse B, Dokomajilar C, Hubbard A, Rosenthal PJ, Dorsey G. Impactof transmission intensity on the accuracy of genotyping to distinguish recrudescence from new infection in antimalarial clinical trials. AAC 2007; 51(9): 3096-103. DOI: https://doi.org/10.1128/AAC.00159-07

Sowunmi A, Adewoye EO, Gbotosho GO, Happi CT, Sijuade A, Folarin OA, et al. Factors contributing to delay in parasite clearance in uncomplicated falciparum malaria in children. Malar J 2010; 9: 53. http://dx.doi.org/10.1186/1475-2875-9-53 DOI: https://doi.org/10.1186/1475-2875-9-53

White NJ. The parasite clearance curve. Malar J 2011; 10(1): 278. http://dx.doi.org/10.1186/1475-2875-10-278 DOI: https://doi.org/10.1186/1475-2875-10-278

Datta S. Estimating the mean life time using right censored data. Statist Methodol 2005; 2(1): 65-69. http://dx.doi.org/10.1016/j.stamet.2004.11.003 DOI: https://doi.org/10.1016/j.stamet.2004.11.003

Zhong M, Hess KR. Mean Survival Time from Right Censored Data. Collection of Biostatistics Research Archives–bepress 2009.

Ying G, Heitjan DF, Chen TT. Nonparametric prediction of event times in randomized Clinical trials. 2004; 1(4): 352-61. http://dx.doi.org/10.1191/1740774504cn030oa DOI: https://doi.org/10.1191/1740774504cn030oa

Demiris N, Lunn D, Sharples LD. Survival extrapolation using the poly-Weibull model. Stat Methods Med Res 2011; 0(0): 1-15. http://dx.doi.org/10.1177/0962280211419645 DOI: https://doi.org/10.1177/0962280211419645

Gbotosho GO, Okuboyejo TM, Happi CT, Sowunmi A. Recrudescent Plasmodium falciparum infections in children in an endemic area following artemisinin–based combination treatments: Implications for disease control. Asian Pac J Trop Dis 2011; 1(3): 195-202. http://dx.doi.org/10.1016/S2222-1808(11)60027-3 DOI: https://doi.org/10.1016/S2222-1808(11)60027-3

Box GEP, Tiao GC. Bayesian inference in statistical analysis. DTIC Document 1973.

Bernardo JM, Smith AFM. Bayesian theory. Meas Sci Technol 2001; 12(2): 221. http://dx.doi.org/10.1088/0957-0233/12/2/702 DOI: https://doi.org/10.1088/0957-0233/12/2/702

Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. Chapman & Hall/CRC 2003. DOI: https://doi.org/10.1201/9780429258480

Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian approaches to clinical trials and health-care evaluation. Wiley 2004; vol. 13. DOI: https://doi.org/10.1002/0470092602

Lesaffre E, Lawson AB. Introduction to Bayesian Inference. Bayesian Biostatistics 2012; pp. 122-124. DOI: https://doi.org/10.1002/9781119942412

Chin R, Lee BY. Principles and practice of clinical trial medicine.Academic Press 2008. DOI: https://doi.org/10.1016/B978-0-12-373695-6.00001-6

Downloads

Published

2013-04-30

How to Cite

Kum, C. K., Thorburn, D., Ghilagaber, G., Gil, P., & Björkman, A. (2013). A Nonparametric Bayesian Approach to Estimating Malaria Prophylactic Effect After Two Treatments. International Journal of Statistics in Medical Research, 2(2), 76–87. https://doi.org/10.6000/1929-6029.2013.02.02.01

Issue

Section

General Articles