Design, Synthesis, Characterizations, and Processing of a Novel c-Donor-nc-Bridge-cf-Acceptor Type Block Copolymer for Optoelecronic Applications

Authors

  • Thuong H. Nguyen Center for Materials Research and Ph.D. Program in Materials Science and Engineering. USA
  • Muhammad Hasib 1Center for Materials Research and Ph.D. Program in Materials Science and Engineering, USA
  • Dan Wang Center for Materials Research and Ph.D. Program in Materials Science and Engineering, USA
  • Sam-Shajing Sun Center for Materials Research and Ph.D. Program in Materials Science and Engineering,USA

DOI:

https://doi.org/10.6000/1929-5995.2016.05.01.3

Keywords:

Conjugated block copolymers, polyphenylenevinylenes, fluorinated conjugated polymers, donor-bridge-acceptor, electron transfer, photo induced charge separation, ligtht harvesting, optoelectronics, solar energy conversions, self-assembly, nano phase separa

Abstract

A novel c-D-nc-B-cf-A (or DBfA) type of block copolymer has been designed, synthesized, characterized, and preliminarily studied for optoectronic applications, where c-D is a conjugated donor type polyphenylenevinylene (PPV) block, nc-B is a non-conjugated bridge unit, and cf-A is a conjugated and fluorinated acceptor type PPV block. The frontier HOMO/LUMO orbital levels of D and fA conjugated blocks are -5.22/-3.06 and -6.10/-3.43 as determined from electrochemical and optical measurements. Photoluminescence emissions of D and fA are quenched in DBfA indicating a potential photo induced charge separation pathway between the donor and the acceptor blocks. Solid state thin film studies revealed more uniform and nano-scale phase separated morphologies in DBfA as compared to D/fA blend. A two orders of magnitude enhancement of photoelectric energy conversion efficiency was observed in a best solar cell fabricated from the DBfA block copolymer as compared to a best cell fabricated from the corresponding D/fA blend. Such significant photoelectric conversion enhancement could be attributed to the improvements of phase separated and bicontinously ordered nanostructure (BONS) morphology in DBfA as compared to D/fA.

References

Sun S, Sariciftci N. Organic Photovoltaics: Mechanisms, Materials and Devices, CRC Press: Boca Raton, Florida 2005.

Tang CW. Two‐layer organic photovoltaic cell. Appl Phys Lett 1986; 48: 183-5. http://dx.doi.org/10.1063/1.96937 DOI: https://doi.org/10.1063/1.96937

Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995; 270: 1789-91. http://dx.doi.org/10.1126/science.270.5243.1789 DOI: https://doi.org/10.1126/science.270.5243.1789

Brabec C, Dyakonov V, Parisi J, Sariciftci, N. Organic Photovoltaics: Concepts and Realization, Springer, Berlin 2003. DOI: https://doi.org/10.1007/978-3-662-05187-0

Gunes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev 2007; 107: 1324-38. http://dx.doi.org/10.1021/cr050149z DOI: https://doi.org/10.1021/cr050149z

Krebs FC. Polymer Photovoltaics: A Practical Approach, SPIE Press Monograph Vol. PM175, Seattle, Washington 2008.

Sun S, O’Neill H. Sunlight Energy Conversion via Organics, in Handbook of Photovoltaic Science and Engineering, 2nd edition, Luque, A and Hegedus, S., eds., Wiley, the Atrium, England 2011; pp. 675-715. DOI: https://doi.org/10.1002/9780470974704.ch16

Chen C, Chang W, Yoshimura K, et al. Adv Mater 2014; 26: 5670-7. http://dx.doi.org/10.1002/adma.201402072 DOI: https://doi.org/10.1002/adma.201402072

Sun S. Design of a block copolymer solar cell. Sol Energy Mater Sol Cells 2003; 79: 257-64. http://dx.doi.org/10.1016/S0927-0248(03)00104-1 DOI: https://doi.org/10.1016/S0927-0248(03)00104-1

Boer B, Stalmach U, Hutten P, Melzer C, Krasnikov V, Hadziioannou G. Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers. Polymer 2001; 42: 9097-9109. http://dx.doi.org/10.1016/S0032-3861(01)00388-3 DOI: https://doi.org/10.1016/S0032-3861(01)00388-3

Zhang Q, Cirpan A, Russell T, Emrick T. Donor−acceptor poly(thiophene-block-perylene diimide) copolymers: synthesis and solar cell fabrication. Macromolecules 2009; 42: 1079-82. http://dx.doi.org/10.1021/ma801504e DOI: https://doi.org/10.1021/ma801504e

Chen XL, Jenekhe SA. Block Conjugated copolymers: toward quantum-well nanostructures for exploring spatial confinement effects on electronic, optoelectronic, and optical phenomena. Macromolecules 1996; 29: 6189-92. http://dx.doi.org/10.1021/ma9605715 DOI: https://doi.org/10.1021/ma9605715

Zhang C, Choi S, Haliburton J, et al. Design, synthesis, and characterization of a −donor−bridge−acceptor−bridge- type block copolymer via alkoxy- and sulfone- derivatized poly(phenylenevinylenes). Macromolecules 2006; 39: 4317-26. http://dx.doi.org/10.1021/ma060179j DOI: https://doi.org/10.1021/ma060179j

Sun S, Brook J, Nguyen T, Zhang C. Design, synthesis, and characterization of a novel c-donor-nc-bridge-c-acceptor type block copolymer for optoelectronic applications. J Poly Sci Poly Chem 2014; 52: 1149-60. http://dx.doi.org/10.1002/pola.27098 DOI: https://doi.org/10.1002/pola.27098

Lee Y, Gomez ED. Challenges and opportunities in the development of conjugated block copolymers for photovoltaics. Macromolecules 2015; 48: 7385-95. http://dx.doi.org/10.1021/acs.macromol.5b00112 DOI: https://doi.org/10.1021/acs.macromol.5b00112

Topham PD, Parnell AJ, Hiorns RC. Block copolymer strategies for solar cell technology. J Poly Sci B Poly Phys 2011; 49: 1131-56. http://dx.doi.org/10.1002/polb.22302 DOI: https://doi.org/10.1002/polb.22302

Johnson K, Huang Y-S, Huettner S, et al. Control of intrachain charge transfer in model systems for block copolymer photovoltaic materials. J Am Chem Soc 2013; 135: 5074-83. http://dx.doi.org/10.1021/ja3121247 DOI: https://doi.org/10.1021/ja3121247

Hiu-Tung C, Zhang W. FluoMar, a fluorous version of the Marshall resin for solution-phase library synthesis. Org Lett 2003; 5: 1015-7. http://dx.doi.org/10.1021/ol0274864 DOI: https://doi.org/10.1021/ol0274864

Hotchkiss PJ, Li H, Paramonov PB, et al. Modification of the surface properties of indium tin oxide with benzylphosphonic acids: a joint experimental and theoretical study. Adv Mater 2009; 21: 4496-501. http://dx.doi.org/10.1002/adma.200900502 DOI: https://doi.org/10.1002/adma.200900502

Hotchkiss PJ, Jones SC, Paniagua SA, et al. The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Acc Chem Res 2012; 45: 337-46. http://dx.doi.org/10.1021/ar200119g DOI: https://doi.org/10.1021/ar200119g

Palacios RE, Chang W-S, Grey JK, et al. Detailed single-molecule spectroelectrochemical studies of the oxidation of conjugated polymers. J Phys Chem B 2009; 113: 14619-28. http://dx.doi.org/10.1021/jp906740n DOI: https://doi.org/10.1021/jp906740n

Zhang C, Harper AW, Dalton LR. Formylation of diethyl 2-thienylmethylphosphonate for one-pot synthesis of aminothienostilbenecarboxaldehyde. Syn Commun 2001; 31: 1361-5. http://dx.doi.org/10.1081/SCC-100104045 DOI: https://doi.org/10.1081/SCC-100104045

Mather BD, Viswanathan K, Miller KM, Long TE. Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 2006; 31: 487-531. http://dx.doi.org/10.1016/j.progpolymsci.2006.03.001 DOI: https://doi.org/10.1016/j.progpolymsci.2006.03.001

Sun S, Dalton, L. eds, Introduction to Organic Electronic and Optoelectronic Materials and Devices, CRC Press/Taylor & Francis: Boca Raton, Florida, USA, May 2008.

Zhang C, Sun J, Li R, Black S, Sun S. Synthesis and energy gap studies of a series of sulfone-substituted polyphenylenevinylenes (SF-PPVs). Synthet Met 2010; 160: 16-21. http://dx.doi.org/10.1016/j.synthmet.2009.09.020 DOI: https://doi.org/10.1016/j.synthmet.2009.09.020

Phelan NF, Orchin M. Cross Conjugation. J Chem Ed 1968; 45: 633-7. http://dx.doi.org/10.1021/ed045p633 DOI: https://doi.org/10.1021/ed045p633

Rohr, T; van Eesbeek, M., in Proceeding of the 8th Polymers for Advanced Technologies International Symposium. Budapest, Hungary (13-16 September 2005).

Downloads

Published

2016-04-18

How to Cite

H. Nguyen, T., Hasib, M., Wang, D., & Sun, S.-S. (2016). Design, Synthesis, Characterizations, and Processing of a Novel c-Donor-nc-Bridge-cf-Acceptor Type Block Copolymer for Optoelecronic Applications. Journal of Research Updates in Polymer Science, 5(1), 18–38. https://doi.org/10.6000/1929-5995.2016.05.01.3

Issue

Section

Articles