Effect of Ionizing Radiation Applied to PLA Used as Compatibilizing Agent in Reinforced eGG Shell PBAT/PLA Bio-Based Composites

Authors

  • Elizabeth C.L. Cardoso Chemistry and Environment Center, (Polymer Laboratory), Institute for Energy and Nuclear Research (IPEN), Butantã, São Paulo, Brazil
  • Duclerc F. Parra Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN - SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP, Brazil; Rua José Ferrari 124, CEP 09530-110, São Caetano do Sul, S. Paulo, Brazil
  • Sandra R. Scagliusi Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN - SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP, Brazil; Rua Natal 386, apto 134, CEP 03186-030, S.Paulo, Brazil
  • L.G.H. Komatsu Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN - SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP, Brazil; Rua Saldanha da Gama 268, CEP 05081-000, S. Paulo, Brazil
  • Ademar B. Lugão Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN - SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP, Brazil

DOI:

https://doi.org/10.6000/1929-5995.2021.10.4

Keywords:

Ionizing radiation, eggshell, PLA, , PBAT, compatibilization

Abstract

Bio-filler from eggshells as reinforcement of bio-based polymers are based on their benefits as adequate strength and stiffness, besides friendly, degradable and renewable environment. Eggshell is an agricultural waste considered as garbage, contributing to pollution; nevertheless, it can be transformed into bio-calcium carbonate, acquiring new values. As biodegradable polymers, there were chosen PLA (poly-lactic-acid) and PBAT (butylene adipate co-terephthalate), thermoplastics capable to be processed via conventional methods. PLA is a linear, aliphatic thermoplastic polyester, high in strength and modulus, but brittle. PBAT is a synthetic polymer, very flexible, based on fossil resources with high elongation at break, but low strength. It will be required the use of compatibilizers, for reducing interfacial tension exhibited by PLA/PBAT immiscible blend, considering their extreme glass transition temperatures: 62 o C for PLA and – 30 o C for PBAT. Herein it was used ionizing radiation for inducing compatibilization by free radicals, improving dispersion and adhesion of blend phases, without using chemical additives, at room temperature. PLA, acting as compatibilizer, was previously e-beam and gamma radiated, at 150 kGy. PBAT/PLA 50/50 blend with 15 phr of bio-filler from avian eggs 125 µm particle size and both compatibilizers were homogeneized in a co-rotating twin-screw extruder, within a temperature profile 120 to 145 o C, from hopper to die. Characterization involved: Differential Scanning Calorimeter, Thermogravimetric Analyses, Fourier Transform Infrared Spectroscopy, Wide Angle X-Ray Diffraction, Tensile Strength and Elongation at Break.

References

Cinelli P, Chiellini E, Lawton JW, Iman SH. Foamed articles based on potato starch, corn fibers and poly(vinyl alcohol). Polymer Degradation and Stability 2006; 91: 1147-1155. https://doi.org/10.1016/j.polymdegradstab.2005.07.001 DOI: https://doi.org/10.1016/j.polymdegradstab.2005.07.001

Jia W, Gong RH, Hogg PJ. Compos Part B: Eng 2014; 62: 104-112. https://doi.org/10.1016/j.compositesb.2014.02.024 DOI: https://doi.org/10.1016/j.compositesb.2014.02.024

Jalali Dil E, Carreau PJ, Favis BD. Polymer 2015; 68: 202-212. https://doi.org/10.1016/j.polymer.2015.05.012 DOI: https://doi.org/10.1016/j.polymer.2015.05.012

Pivsa-Art W, Chaiyasat A, Pivsa-Art S, Yamane H, Ohara H. Energy Procedia 2013; 34: 549-554. https://doi.org/10.1016/j.egypro.2013.06.784 DOI: https://doi.org/10.1016/j.egypro.2013.06.784

Yu T, Li Y. Compos Part A: Appl S 2014; 58: 24-29. https://doi.org/10.1016/j.compositesa.2013.11.013 DOI: https://doi.org/10.1016/j.compositesa.2013.11.013

Zhao P, Liu W, Wu Q, Ren J. J Nanomater 2010; 287082. https://doi.org/10.1155/2010/287082 DOI: https://doi.org/10.1155/2010/287082

Chaishome J, Brown KA, Brooks R, Clifford MJ. Advanced Materials Research 2014; 894: 32-36. https://doi.org/10.4028/www.scientific.net/AMR.894.32 DOI: https://doi.org/10.4028/www.scientific.net/AMR.894.32

Chaishome J, Rattanapaskorn S. IOP Conference Series: Materials Science and Engineering 2017; 191. https://doi.org/10.1088/1757-899X/191/1/012007 DOI: https://doi.org/10.1088/1757-899X/191/1/012007

Gupta A, Kumar V. Eur Polym J 2007; 43(10): 4053e74. https://doi.org/10.1016/j.eurpolymj.2007.06.045 DOI: https://doi.org/10.1016/j.eurpolymj.2007.06.045

Klemm D, Heublein B, Fink HP, Bohn A. Angew Chem Int Ed 2005; 44: 3358. https://doi.org/10.1002/anie.200460587 DOI: https://doi.org/10.1002/anie.200460587

Habibi Y, Lucia LA, Rojas OJ. Chem Rev 2010; 110: 3479. https://doi.org/10.1021/cr900339w DOI: https://doi.org/10.1021/cr900339w

Dufresne A. Mater Today 2013; 16: 220. https://doi.org/10.1016/j.mattod.2013.06.004 DOI: https://doi.org/10.1016/j.mattod.2013.06.004

Azizi Samir MAS, Alloin F, Dufresne A. Biomacromolecules 2005; 6: 612. https://doi.org/10.1021/bm0493685 DOI: https://doi.org/10.1021/bm0493685

Nonato RV, Mantelatto PE, Rossell CEV. Appl Microbiol Biotechnol 2001; 57: 1.

Ravi Kumar MN. React Funct Polym 2000; 46: 1. https://doi.org/10.1016/S1381-5148(00)00038-9 DOI: https://doi.org/10.1016/S1381-5148(00)00038-9

Blackburn RS. Environ Sci Technol 2004; 38: 4905. https://doi.org/10.1021/es049972n DOI: https://doi.org/10.1021/es049972n

Rodrigues BVM, Silva AS, Melo GFS, Vasconscellos LMR, Marciano FR, Lobo AO. Mater Sci Eng C 2016; 59: 782. https://doi.org/10.1016/j.msec.2015.10.075 DOI: https://doi.org/10.1016/j.msec.2015.10.075

Van de Velde K, Kiekens P. Polym Test 2002; 21: 433. https://doi.org/10.1016/S0142-9418(01)00107-6 DOI: https://doi.org/10.1016/S0142-9418(01)00107-6

Gross RA, Kalra B. Science 2002; 297: 803. https://doi.org/10.1126/science.297.5582.803 DOI: https://doi.org/10.1126/science.297.5582.803

Pereira da Silva JS, Farias da Silva JM, Soares BG, Livi S. Compos B 2017; 129: 117. https://doi.org/10.1016/j.compositesb.2017.07.088 DOI: https://doi.org/10.1016/j.compositesb.2017.07.088

Santana-Melo GF, Rodrigues BVM, da Silva E, Ricci R, Marciano FR, Webster TJ, Vasconcellos LMR, Lobo AO. Colloids Surf B 2017; 155: 544. https://doi.org/10.1016/j.colsurfb.2017.04.053 DOI: https://doi.org/10.1016/j.colsurfb.2017.04.053

de Castro JG, Rodrigues BVM, Ricci R, Costa MM, Ribeiro AFC, Marciano FR, Lobo AO. RSC Adv 2016; 6: 32615. https://doi.org/10.1039/C6RA00889E DOI: https://doi.org/10.1039/C6RA00889E

Alexandre M, Dubois P. Mater Sci Eng 2000; 28(1e2): 1e63. https://doi.org/10.1016/S0927-796X(00)00012-7 DOI: https://doi.org/10.1016/S0927-796X(00)00012-7

Maazouz A, Lamnawar K, Mallet B. Front Sci Eng (Int J) 2011; 1e44.

Lamnawar K, Maazouz A, Mallet B. Patent; International patent C08J5/, 2010.

Gu SY, Zhang K, Ren J, Zhan H. Carbohyd Polym 2008; 74(1): 79e85. https://doi.org/10.1016/j.carbpol.2008.01.017 DOI: https://doi.org/10.1016/j.carbpol.2008.01.017

Global poultry trends: “Asia is a key to global egg output growth”. The Global Poultry Site. http://www.Thepoultrysite. com/articles/2735/global-poultry-trends-asia-is-key-to-global-egg-output-growth, (2013).

Hassan SB, Aigbodion VS, Patrick SN. Development of polyester egg-shell particulate composites. Tribol Ind 2012; 34(4): 217-225.

Burillo G, Clough RL, Czvikovszky T, Guven O, Le Moel A, Liu WW, Singh A, Yang JT, Zaharescu T. Polymer recycling: Potential application of radiation technology. Radiation Physics and Chemistry 2002; 64(1): 41-51. https://doi.org/10.1016/S0969-806X(01)00443-1 DOI: https://doi.org/10.1016/S0969-806X(01)00443-1

Sonnier R, Rouif S, Taguet A. Modification of polymer blends by E-beam and gamma irradiation, www.researcggate.net/publication/285296722.

Makuuchi K, Cheng S. Radiation Processing of Polymer Materials and Its Industrial Applications, Nova York: John Wiley & Sons Inc, 2012; p. 1. https://doi.org/10.1002/9781118162798 DOI: https://doi.org/10.1002/9781118162798

Chmielewski A, Haji-Saeid M. Radiation Physics And Chemistry 2004; 71: 17. https://doi.org/10.1016/j.radphyschem.2004.05.040 DOI: https://doi.org/10.1016/j.radphyschem.2004.05.040

Zhao W, Pan X. Technology of Radiation Processing and its Applications, Beijing, China: Weapon Industry, 2003.

Telnov AV, Zavyalov NV, Khokhlov YA, Sitnikov NP, Smetanin ML, Tarantasov VP, Shadrinshorikov DN, Liakumovich AL, Miryasova FK. Radiation Physics and Chemistry 2002; 63: 245. https://doi.org/10.1016/S0969-806X(01)00645-4 DOI: https://doi.org/10.1016/S0969-806X(01)00645-4

Kim HS, Park BH, Choi JH, Yoon JS, Mechanical properties and thermal stability of poly(L-lactide)/calcium carbonate composites. J Appl Polym Sci 2008; 109: 3087-3092. https://doi.org/10.1002/app.28229 DOI: https://doi.org/10.1002/app.28229

Cenna AA, Doyle J, Page NW, Beehag A, Dastoor P. Wear mechanisms in polymer matrix composites abraded by bulk solids. Wear 2000; 240: 207-214. https://doi.org/10.1016/S0043-1648(00)00365-3 DOI: https://doi.org/10.1016/S0043-1648(00)00365-3

Downloads

Published

2021-03-03

How to Cite

Cardoso, E. C. ., Parra, D. F. ., Scagliusi, S. R. ., Komatsu, L. ., & Lugão, A. B. . (2021). Effect of Ionizing Radiation Applied to PLA Used as Compatibilizing Agent in Reinforced eGG Shell PBAT/PLA Bio-Based Composites. Journal of Research Updates in Polymer Science, 10, 27–33. https://doi.org/10.6000/1929-5995.2021.10.4

Issue

Section

5th Brazilian Conference on Composite Materials , 18th to 22nd January, 2021

Most read articles by the same author(s)