Characterization of Natural Fibres and Their Polymer-based Composites

Authors

  • Afrina K. Piya Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh, Dhaka-1000, Bangladesh
  • Munshi M. Raihan Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh
  • Ruhul A. Khan Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh

DOI:

https://doi.org/10.6000/1929-5995.2019.08.06

Keywords:

Natural Fibre, Synthetic Fibre, Composites, Biodegradability, Mechanical Properties.

Abstract

Development of new alternative materials having the superior characteristics than traditional material has become a new buzz to the researchers. One of the achievements in this field is fibre reinforced polymer composites (FRPCs). The most fascinating aspect of FRPCs is light weight but higher strength and chemical resistance. Further to obtain a biodegradable one natural fibre are taking place of synthetic fibre in the processing of NFRPCs. Researchers have done extensive research works on NFRPCs to expand it application field. But sometimes only natural fibre reinforcement cannot fulfil the design requirement. Hybridization with synthetic fibre reinforcement can significantly improve the physical and mechanical properties despite of processing parameters. Again, nanoparticle fillers are also helpful to enhance the mechanical properties. The aim of this study is to clarify the use of different types of natural fibres as reinforcement to fabricate polymer composites and their corresponding mechanical properties for particular application which will be helpful to design NFRPCs for different application.

References

Kozłowski R M, Mackiewicz-Talarczyk M. 1 - Introduction to natural textile fibres, Editor(s): Ryszard M. Kozłowski, In Woodhead Publishing Series in Textiles, Handbook of Natural Fibres. Woodhead Publishing 2012; p. 1:1-8. DOI: https://doi.org/10.1533/9780857095503.1

Saba N, Tahir P M, Jawaid M. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites. Polymers 2014; 6: 2247-2273. https://doi.org/10.3390/polym6082247 DOI: https://doi.org/10.3390/polym6082247

Dittenber DB, Ganga Rao HVS. Critical review of recent publications on use of natural composites in infrastructure. Compos Part A: Appl Sci Manuf 2012; 43(8): 1419-1429. https://doi.org/10.1016/j.compositesa.2011.11.019 DOI: https://doi.org/10.1016/j.compositesa.2011.11.019

Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites reinforced with natural fibers: 2000-2010. Prog Polym Sci 2012; 37(11): 1552-1576. http://dx.doi.org/10.1016/j.progpolymsci.2012.04.003 DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003

Holbery J, Houston D. Natural fibre reinforced polymer composites in automotive applications. J Mine Met Mater Soc 2006; 58: 80-86. https://doi.org/10.1007/s11837-006-0234-2 DOI: https://doi.org/10.1007/s11837-006-0234-2

Yan L, Chouw N, Jayaraman K. Flax fibre and its composites- A review. Compos Part B 2014; 56: 296-314. https://doi.org/10.1016/j.compositesb.2013.08.014 DOI: https://doi.org/10.1016/j.compositesb.2013.08.014

Debes Bhattacharyya, Aruna Subasinghe, Nam Kyeun Kim. Chapter 4 - Natural fibers: Their composites and flammability characterizations, In: Klaus Friedrich and Ulf Breuer editors. Multifunctionality of Polymer Composites. New York: William Andrew Publishing 2015; p. 102-143. https://doi.org/10.1016/C2013-0-13006-1 DOI: https://doi.org/10.1016/B978-0-323-26434-1.00004-0

Mohammed L, Ansari M N M, Pua G, Jawaid M, Islam MS. A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015; 2015: 15. http://dx.doi.org/10.1155/2015/243947 DOI: https://doi.org/10.1155/2015/243947

Wendi Liu, Tingting Chen, Ming-en Fei, Renhui Qiu, Demei Yu, Tengfei Fu, Jianhui Qiu. Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition. Compos Part B: Eng 2019; 171: 87-95. https://doi.org/10.1016/j.compositesb.2019.04.048 DOI: https://doi.org/10.1016/j.compositesb.2019.04.048

Anandjiwala RD, Blouw S. Composites from bast fibres—prospects and potential in the changing market environment. J Nat Fibers 2007; 4(2): 91-101. https://doi.org/10.1300/J395v04n02_07 DOI: https://doi.org/10.1300/J395v04n02_07

Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT. Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos Part A: Appl Sci Manuf 2007; 38(6): 1569-1580. https://doi.org/10.1016/j.compositesa.2007.01.001 DOI: https://doi.org/10.1016/j.compositesa.2007.01.001

Scheibel T. Protein fibers as performance proteins: new technologies and applications. Curr Opin Biotechnol 2005;16(4):427-433. https://doi.org/10.1016/j.copbio.2005.05.005 DOI: https://doi.org/10.1016/j.copbio.2005.05.005

Feughelman M. Natural protein fibers. J Appl Polym Sci 2002; 83(3): 489-507. https://doi.org/10.1002/app.2255 DOI: https://doi.org/10.1002/app.2255

Bhowmick M, Mukhopadhyay S, & Alagirusamy R. Mechanical Properties of Natural fibre-reinforced composites. Text Prog 2012; 44(2): 85-100. https://doi.org/10.1080/00405167.2012.676800 DOI: https://doi.org/10.1080/00405167.2012.676800

Rouison D, Sain M, Couturier M. Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Tech 2004; 64: 629-644. https://doi.org/10.1016/j.compscitech.2003.06.001 DOI: https://doi.org/10.1016/j.compscitech.2003.06.001

Jai Inder Preet Singh, Vikas Dhawan, Sehijpal Singh, Kapil Jangid. Study of Effect of Surface Treatment on Mechanical Properties of Natural Fiber Reinforced Composites. Mater Today: Proc 2017; 4(2): 2793-2799. https://doi.org/10.1016/j.matpr.2017.02.158 DOI: https://doi.org/10.1016/j.matpr.2017.02.158

Kabir M M, Wang H, Lau K T, Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos: Part B 2012; 43: 2883-2892. https://doi.org/10.1016/j.compositesb.2012.04.053 DOI: https://doi.org/10.1016/j.compositesb.2012.04.053

Mehta G, Mohanty A, Misra M, Drzal L. Effect of novel sizing on the mechanical and morphological characteristics of natural fiber reinforced unsaturated polyester resin-based bio-composites. J Mater Sci 2004; 39: 2961-2964. https://doi.org/10.1023/B:JMSC.0000021492.61235.00 DOI: https://doi.org/10.1023/B:JMSC.0000021492.61235.00

Alvarez V, Fraga A, Vazquez A. Effects of the moisture and fiber content on the mechanical properties of biodegradable polymer-sisal fiber biocomposites. J Appl Polym Sci 2004; 91: 4007-4016. https://doi.org/10.1002/app.13561 DOI: https://doi.org/10.1002/app.13561

Baiardo M, Zini E, Scandola M. Flax fiber-polyester composites. Compos Part A: Appl Sci Manuf 2004; 35:703-710. https://doi.org/10.1016/j.compositesa.2004.02.004 DOI: https://doi.org/10.1016/j.compositesa.2004.02.004

Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M. Composites of poly (L lactide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci 2007; 105: 255-268. https://doi.org/10.1002/app.26090 DOI: https://doi.org/10.1002/app.26090

Vijayan R, Krishnamoorthy A. Review on Natural Fiber Reinforced Composites. Mater Today: Proc 2019:16(2); 897-906. https://doi.org/10.1016/j.matpr.2019.05.175

Wang B, Panigrahi S, Tabil L, Crerar W. Pre-treatment of flax fibres for use in rotationally molded biocomposites. J Reinf Plast Compos 2007; 26(5): 447-463. https://doi.org/10.1177/0731684406072526 DOI: https://doi.org/10.1177/0731684406072526

Dash B N, Rana A K, Mishra S C, Mishra H K, Nayak S K, Tripathy S S. Novel low cost jute-polyester composite. II. SEM observation of the fracture surfaces. Polym Plast Tech Eng 2000; 39(2): 333-350. https://doi.org/10.1002/pc.10335 DOI: https://doi.org/10.1081/PPT-100100033

Panikkassery Sasidharan Sari, Sabu Thomas, Petr Spatenka, Zoya Ghanam, Zdenka Jenikova, Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding, Compos Part B: Eng 2019; 177: 107344. https://doi.org/10.1016/j.compositesb.2019.107344 DOI: https://doi.org/10.1016/j.compositesb.2019.107344

Mikhail A. Torlopov, Ilia S Martakov, Vasily I Mikhaylov, Pavel V. Krivoshapkin, Nikolay V. Tsvetkov, Petr А. Sitnikov, Elena V. Udoratina, Disk-like nanocrystals prepared by solvolysis from regenerated cellulose and colloid properties of their hydrosols. Carbohydr Polym 2018; 200: 162-172. https://doi.org/10.1016/j.carbpol.2018.08.002 DOI: https://doi.org/10.1016/j.carbpol.2018.08.002

Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Salah AB, Gandini A. Modification of cellulosic fibres with functionalized silanes: development of surface properties.Int J Adhes Adhes 2004; 24(1): 43-54. https://doi.org/10.1016/S0143-7496(03)00099-X DOI: https://doi.org/10.1016/S0143-7496(03)00099-X

John MJ, Anandjiwala RD. Recent developments in chemical modification and characterization of natural fibre-reinforced composites. Polym Compos 2007; 29(2): 187-207. https://doi.org/10.1002/pc.20461 DOI: https://doi.org/10.1002/pc.20461

Li X, Tabil L G, Panigrahi S. Chemical treatment of natural fibre for use in natural fibre-reinforced composites: a review. J Polym Environ 2007; 15(1): 25-33. https://doi.org/10.1007/s10924-006-0042-3

Tina Haghighatnia, Ali Abbasian, Jalil Morshedian. Hemp fiber reinforced thermoplastic polyurethane composite: An investigation in mechanical properties. Ind Crops Prod 2017; 108: 853-863. https://doi.org/10.1016/j.indcrop.2017.07.020 DOI: https://doi.org/10.1016/j.indcrop.2017.07.020

Ray D, Sarkar BK, Rana AK, Bose NR. Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 2001; 24(2): 129-135. https://doi.org/10.1007/BF02710089

Joseph P V, Joseph K, Thomas S, Pillai C K S, Prasad VS, Groeninckx G, et al. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos Part A: Appl Sci Manuf 2003; 34(3): 253-266. https://doi.org/10.1016/S1359-835X(02)00185-9 DOI: https://doi.org/10.1016/S1359-835X(02)00185-9

Li X, Tabil LG, Panigrahi S. Chemical treatment of natural fibre for use in natural fibre-reinforced composites: a review. J Polym Environ 2007; 15(1): 25-33. https://doi.org/10.1007/s10924-006-0042-3 DOI: https://doi.org/10.1007/s10924-006-0042-3

Mwaikambo LY, Tucker N, Clark AJ. Mechanical properties of hemp fibre reinforced euphorbia composites. Macromol Mater Eng 2007; 292(9): 993-1000. https://doi.org/10.1002/mame.200700092 DOI: https://doi.org/10.1002/mame.200700092

Ray D, Sarkar BK, Rana AK, Bose NR. Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 2001; 24(2): 129-135. https://doi.org/10.1007/BF02710089 DOI: https://doi.org/10.1007/BF02710089

Cyras VP, Vallo C, Kenny JM, Vazquez A. Effect of chemical treatment on the mechanical properties of starch-based blends reinforced with sisal fibre. J Compos Mater 2004; 38(16): 1387-1399. https://doi.org/10.1177/0021998304042738 DOI: https://doi.org/10.1177/0021998304042738

Ouajai S, Shanks RA. Composition, structure and thermal degradation of hemp cellulose after chemical treatment. Polym Degrad Stab 2005; 89(2): 327-335. https://doi.org/10.1016/j.polymdegradstab.2005.01.016 DOI: https://doi.org/10.1016/j.polymdegradstab.2005.01.016

Prasad SV, Pavithran C, Rohatgi PK. Alkali treatment of coir fibres for coir-polyester composites. J Mater Sci 1983; 18(5): 1443-1454. https://doi.org/10.1007/BF01111964 DOI: https://doi.org/10.1007/BF01111964

Pickering KL, Li Y, Farrell RL. Fungal and Alkali Interfacial Modification of Hemp Fibre Reinforced Composites. Key Eng Mater 2007; 334-335: 493-496. https://doi.org/10.4028/www.scientific.net/KEM.334-335.493 DOI: https://doi.org/10.4028/www.scientific.net/KEM.334-335.493

Adekunle K, Akesson D, Skrifvars M. Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural-fiber reinforcement. J Appl Polym Sci 2010; 116(3): 1759-1765. https://doi.org/10.1002/app.31634 DOI: https://doi.org/10.1002/app.31634

Mwaikambo Y M, Ansell M P. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok fibres for composite reinforcement. Angewandte Makromolekulare Chemie 1999; 272: 108-116. https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9 DOI: https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9

Abdelmouleh M, Boufis S, Belgacem M N, Dufresne A. Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibre loading. Compos Sci Tech 2007; 67(7-8): 1627-1639. https://doi.org/10.1016/j.compscitech.2006.07.003 DOI: https://doi.org/10.1016/j.compscitech.2006.07.003

Leonard Y M, Martin P A. Chemical modification of hemp, sisal, jute and kapok fibres by alkalisation. J Appl Polym Sci 2002; 84(12): 2222-2234. https://doi.org/10.1002/app.10460 DOI: https://doi.org/10.1002/app.10460

Bowles KJ, Frimpong S. Void effects on the interlaminar shear strength of unidirectional graphite-fiber-reinforced composites. J Compos 1992; 26(10): 1487-1491. https://doi.org/10.1177/0021998318772152 DOI: https://doi.org/10.1177/002199839202601006

Vaxman A, Narkis M, Siegmann A, Kenig S. Void formation in short-fiber thermoplastic composites. Polym Compos 2004; 10(6): 449-453. https://doi.org/10.1002/pc.750100609 DOI: https://doi.org/10.1002/pc.750100609

Sgriccia N, Hawley MC, Misra M. Characterization of natural fibre surfaces and natural fibre composites. Compos Part A: Appl Sci Manuf 2008; 39(10): 1632-1637. https://doi.org/10.1016/j.compositesa.2008.07.007 DOI: https://doi.org/10.1016/j.compositesa.2008.07.007

Taj S, Ali M, Khan S. Review: natural fibre reinforced polymer composites. Proc Pak Acad Sci 2007; 44(2): 129-134. https://doi.org/10.1016/j.matpr.2019.05.175

Zakaria S, Poh LK. Polystyrene-benzoylated EFB reinforced composites. Polymer Plast Tech Eng 2002; 41(5): 951-62. https://doi.org/10.1081/PPT-120014397 DOI: https://doi.org/10.1081/PPT-120014397

Ashik KP, Ramesh S Sharma, VL Jagannatha Guptha. Investigation of moisture absorption and mechanical properties of natural /glass fiber reinforced polymer hybrid composites. Mater Today: Proc 2018; 5(1): 3000-3007. https://doi.org/10.1016/j.matpr.2018.01.099 DOI: https://doi.org/10.1016/j.matpr.2018.01.099

Rozyanty Rahman, Syed Zhafer Firdaus Syed Putra. Tensile properties of natural and synthetic fiber-reinforced polymer composites. In: Mohammad Jawaid, Mohamed Thariq, Naheed Saba editors. Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. 1st ed. UK: Woodhead Publishing 2018; p. 81-102. DOI: https://doi.org/10.1016/B978-0-08-102292-4.00005-9

Yamamoto T, Uematsu K, Irisawa T, Tanabe Y. A Polymer Colloidal Technique for Enhancing Bending Properties of Carbon Fiber-Reinforced Thermoplastics using Nylon modifier. Compos Part A: Appl Sci Manuf 2018; 112: 250- 254. https://doi.org/10.1016/j.compositesa.2018.06.011 DOI: https://doi.org/10.1016/j.compositesa.2018.06.011

Masudur Rahman A N M, Shah Alimuzzaman, Ruhul A Khan, Md Ershad Khan and Sheikh Nazmul Hoque. Fabrication, Mechanical Characterization and Interfacial Properties of Okra Fiber Reinforced Polypropylene Composites. Int J Eng Mater Manuf 2018; 3(1): 18-31. https://doi.org/10.26776/ijemm.03.01.2018.03 DOI: https://doi.org/10.26776/ijemm.03.01.2018.03

Zaman H U, Khan R A, Khan M A, & Beg M D H, (2013). Physio-mechanical and degradation properties of biodegradable photo grafted coir fiber with acrylic monomers. Polym Bull 2013; 70(8): 2277-2290. https://doi.org/10.1007/s00289-013-0950-z DOI: https://doi.org/10.1007/s00289-013-0950-z

Horrocks A. An introduction to the burning behaviour of cellulosic fibres. J Soc Dyers Colour 1983; 99(78): 1917. https://doi.org/10.1111/j.1478-4408.1983.tb03686.x DOI: https://doi.org/10.1111/j.1478-4408.1983.tb03686.x

Plackett D. Biodegradable polymer composites from natural fibres, In: Ray Smith editors. Biodegradable Polymers for Industrial Applications. 1st ed. UK: Woodhead Publishing 2005; p.189-218. DOI: https://doi.org/10.1533/9781845690762.2.189

Manfredi LB, Rodríguez ES, Wladyka-Przybylak M, Vázquez A. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their compos¬ites with natural fibres. Polym Degrad Stab 2006; 91(2): 255-261. https://doi.org/10.1016/j.polymdegradstab.2005.05.003 DOI: https://doi.org/10.1016/j.polymdegradstab.2005.05.003

Benisek L. Flame retardance of protein fibers Lewin M, Atlas SM, Pearce EM, editors. Flame-retardant polymeric materials. New York, USA: Plenum Press, 1975.137-91. DOI: https://doi.org/10.1007/978-1-4684-2148-4_3

Teresa D'Amico, Craig J Donahue ND Elizabeth A. Rais Thermal Analysis of Plastics. J Chem Educ 2008; 85(3): 404-408. https://doi.org/10.1021/ed085p404 DOI: https://doi.org/10.1021/ed085p404

Deepak Verma, Irem Senal. Natural fiber-reinforced polymer composites: Feasibiliy study for sustainable automotive industries, In: Deepak Verma, Elena Fortunati, Siddharth Jain, Xiaolei Zhang editors. Biomass, Biopolymer-Based Materials and Bioenergy. UK: Woodhead Publishing 2019; p.103-122. DOI: https://doi.org/10.1016/B978-0-08-102426-3.00006-0

Liliana Hernández-Vázquez, Susana Mangas, Javier Palazón, Arturo Navarro-Oca˜na Valuable medicinal plants and resins: Commercial phytochemicals with bioactive properties. Ind Crops Prod 2010; 31: 476-480. https://doi.org/10.1016/j.indcrop.2010.01.009 DOI: https://doi.org/10.1016/j.indcrop.2010.01.009

Pizzi A, Kueny R, Lecoanet F, Massetau B, Carpentiera D, Krebsa A, Loiseau F, Molina S, Ragoubi M. High resin content natural matrix-natural fibre biocomposites. Ind Crops Prod 2009; 30: 235-240. https://doi.org/10.1016/j.molstruc.2016.02.079 DOI: https://doi.org/10.1016/j.indcrop.2009.03.013

Jian bo Chen, Qun Zhou, Su qin Sun. Direct chemical characterization of natural wood resins by temperature resolved and space-resolved Fourier transform infrared spectroscopy. J Mol Struct 2016; 1115: 55-62. https://doi.org/10.1016/j.molstruc.2016.02.079 DOI: https://doi.org/10.1016/j.molstruc.2016.02.079

Faruk O, MS Ain. Biofiber reinforced polymer composites for structural applications. In: Nasim Uddin editors. Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering. UK: Woodhead Publishing 2013; p.18-23. DOI: https://doi.org/10.1533/9780857098955.1.18

Masudur Rahman ANM, Ruhul A, Alimuzzaman S. Effect of Weave Structure and Yarn Density on Mechanical Attributes of Jute Fabric Reinforced Polypropylene Composites. J Textile Sci Eng 2018; 8: 340. https://doi.org/10.4172/2165-8064.1000340 DOI: https://doi.org/10.4172/2165-8064.1000340

Masudur Rahman A N M, Shah Alimuzzaman, Ruhul A Khan and Jamal Hossen, Evaluating the performance of gamma irradiated okra fiber reinforced polypropylene (PP) composites: comparative study with jute/PP. Fash Text 2018; 5: 28. https://doi.org/10.1186/s40691-018-0148-y DOI: https://doi.org/10.1186/s40691-018-0148-y

Mohammad Abul Hasan, Mohammad Arif Hossain, Mohammad Sahadat Hossain, Ruhul A Khan, A M Sarwaruddin Chowdhury. Studies on the Mechanical and Degradation Properties of Composites Using Acacia Catechu, Jute and Polypropylene. Am J Polym Sci Technol 2018; 4(4): 61-65. https://doi.org/10.11648/j.ajpst.20180404.11

Farhana Islam, Md Naimul Islam, Shahirin Shahida, Harun Ar Rashid, Nanda Karmaker, Farjana A Koly, Jumana Mahmud, Kamrun N Keya,Ruhul A Khan. Mechanical and Interfacial Characterization of Jute Fabrics Reinforced Unsaturated Polyester Resin Composites. Nano Hybrid Compos 2019; 25: 22-31. https://doi.org/10.4028/www.scientific.net/NHC.25.22 DOI: https://doi.org/10.4028/www.scientific.net/NHC.25.22

Pavithran C, Mukherjee P S, Brahmakumar M and Damodaran A D. Impact properties of natural fibre composites. J Mater Sci Lett 1987; 6: 882-884. https://doi.org/10.1007/BF01729857 DOI: https://doi.org/10.1007/BF01729857

Mishra S, Misra M, Tripathy S S, Nayak S K and Mohanty A K. Potentiality of pineapple leaf fibre as reinforcement in PALF-polyester composite: Surface modification and mechanical performance. J Reinf Plast Comp 2001; 20: 321-334. https://doi.org/10.1177/073168401772678779 DOI: https://doi.org/10.1177/073168401772678779

Mohammad Bellal Hoque, Md Sahadat Hossain. Abdul M Nahid, Solaiman Bari, Ruhul A Khan. Fabrication and Characterization of Pineapple Fiber-Reinforced Polypropylene Based Composites. Nano Hybrid Compos 2018; 21: 31-42. https://doi.org/10.4028/www.scientific.net/NHC.21.31 DOI: https://doi.org/10.4028/www.scientific.net/NHC.21.31

Bongarde US, Shinde VD. Review on natural fiber reinforcement polymer composites. Int J Eng Sci Technol 2014; 3(2): 431. https://doi.org/10.1016/j.matpr.2019.05.175 DOI: https://doi.org/10.1016/j.matpr.2019.05.175

Thwe MM, Liao K. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Sci Technol 2003; 63: 375-387. https://doi.org/10.1016/S0266-3538(02)00225-7 DOI: https://doi.org/10.1016/S0266-3538(02)00225-7

Fu SY, Xu G, Mai YW. On the elastic modulus of hybrid particle/short-fiber/polymer composites. Composites Part B 2002; 33-39: 1-9. https://doi.org/10.1016/S1359-8368(02)00013-6 DOI: https://doi.org/10.1016/S1359-8368(02)00013-6

Joshi SV, Drzal LT, Mohanty A K, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A 2004; 35-37: 1-6. https://doi.org/10.1016/j.compositesa.2003.09.016 DOI: https://doi.org/10.1016/j.compositesa.2003.09.016

Assarar M, Zouari W, Sabhi H, Ayad R, Berthelot J M. Evaluation of the damping of hybrid carbon-flax reinforced composites. Compos Struct 2015; 132: 148-154. https://doi.org/10.1016/j.compstruct.2015.05.016 DOI: https://doi.org/10.1016/j.compstruct.2015.05.016

Kumar CS, Arumugam V, Dhakal HN, John R. Effect of temperature and hybridisation on the low velocity impact behavior of hemp-basalt/epoxy composites. Compos Struct 2015; 125: 407-416. https://doi.org/10.1016/j.compstruct.2015.01.037 DOI: https://doi.org/10.1016/j.compstruct.2015.01.037

Jawaid M, Abdul Khalil HPS. Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 2011; 86: 1-18. https://doi.org/10.1016/j.carbpol.2011.04.043 DOI: https://doi.org/10.1016/j.carbpol.2011.04.043

John M, Thomas S. Biofibres and biocomposites. Carbohydr Polym 2008; 71: 343-349. https://doi.org/10.1016/j.carbpol.2007.05.040 DOI: https://doi.org/10.1016/j.carbpol.2007.05.040

Bakar NH, Hyie KM, Ramlan AS, Hassan MK, Aidah J. Mechanical properties of Kevlar reinforcement in kenaf composites. Appl Mech Mater 2013; 465-466: 847-851. https://doi.org/10.4028/www.scientific.net/AMM.465-466.847 DOI: https://doi.org/10.4028/www.scientific.net/AMM.465-466.847

Ahmed KS, Vijayarangan S, Kumar A. Low velocity impact damage characterization of woven jute glass fabric reinforced isothalic polyester hybrid composites. J Reinf Plast Comp 2007; 26: 959-966. https://doi.org/10.1007/BF00576542 DOI: https://doi.org/10.1177/0731684407079414

Noorunnisa Khanam P, Abdul Khalil HPS, Jawaid M, Ramachandra Reddy G, Surya Narayana C, Venkata Naidu S. Sisal/carbon fibre reinforced hybrid composites: tensile, flexural and chemical resistance properties. J Polym Environ 2010; 14: 727-733. https://doi.org/10.1002/app.27441 DOI: https://doi.org/10.1007/s10924-010-0210-3

Azrin Hani AR, Roslan A, Jaafar M, Roslan MN, Ariffin S. Mechanical properties evaluation of woven coir and kevlar reinforced epoxy composites. Adv Mater Res 2011; 277: 36-42. https://doi.org/10.1002/app.27441 DOI: https://doi.org/10.4028/www.scientific.net/AMR.277.36

Bonnia NN, Surip SN, Ratim S, Mahat MM. Mechanical performance of hybrid pol¬yester composites reinforced Cloisite 30B and kenaf fibre. AIP Conf Proc; Penang: Malaysia; 2012; 1455: 136-141. https://doi.org/10.1063/1.4732482 DOI: https://doi.org/10.1063/1.4732482

Anuar H, Ahmad S, Rasid R, Ahmad A, Busu W. Mechanical properties and dynamic mechanical analysis of thermoplastic-natural-rubber-reinforced short carbon fiber and kenaf fiber hybrid composites. J Appl Polym Sci 2008; 107(6): 4043-4052. https://doi.org/10.1002/app.27441 DOI: https://doi.org/10.1002/app.27441

Pavithran C, Mukharjee P S, Brahma Kumar M, Damodaran A D. Impact properties of Sisal glass hybrid laminates. J Mater Sci 1999; 26:455-459. https://doi.org/10.1007/BF00576542 DOI: https://doi.org/10.1007/BF00576542

Arthanarieswaran, VP, Kumaravel, A, Kathirselvam M. Evaluation of mechanical properties of banana and sisal Fibre reinforced epoxy composites: Influence of glass Fibre hybridization. Mater Des 2014; 64: 194-202. https://doi.org/10.1016/j.matdes.2014.07.058 DOI: https://doi.org/10.1016/j.matdes.2014.07.058

Duc F, Bourban PE, Plummer C J G, Månson J A E. Damping of thermoset and thermoplastic flax fibre composites. Composites Part A 2014; 64:115-123. https://doi.org/10.1016/j.compositesa.2014.04.016 DOI: https://doi.org/10.1016/j.compositesa.2014.04.016

Akil H M, Santulli C, Sarasini F, Tirillò J, & Valente T. Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites. Compos Sci Technol 2014; 94: 62-70. https://doi.org/10.1016/j.compscitech.2014.01.017 DOI: https://doi.org/10.1016/j.compscitech.2014.01.017

Md Naimul Islam, Harun Ar Rashid, Farhana Islam. Fabrication and Characterization of E-Glass Fiber Reinforced Unsaturated Polyester Resin Based Composite Materials. Nano Hybrid Compos 2018; 24: 1-7. https://doi.org/10.4028/www.scientific.net/NHC.24.1 DOI: https://doi.org/10.4028/www.scientific.net/NHC.24.1

Athijayamani A, Thiruchitrambalam M, Natarajan U, Pazhanivel, B. Effect of moisture absorption on the mechanical properties of randomly oriented natural Fibres/polyester hybrid composite. Mater Sci Eng 2009; 517: 344-353. https://doi.org/10.1016/j.msea.2009.04.027 DOI: https://doi.org/10.1016/j.msea.2009.04.027

Fernandes E M, Mano J F, Reis R L. Hybrid cork-polymer composites containing sisal fibre Morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Compos Struct 2013; 105:153-162. https://doi.org/10.1016/j.compstruct.2013.05.012 DOI: https://doi.org/10.1016/j.compstruct.2013.05.012

Md Sahadat Hossain, Md Mostafizur Rahman, Niloy Rahman, Md Saddam Hossain, Khandaker Umaiya, Muhammad B Uddin, A M Sarwaruddin Chowdhury, Ruhul A Khan. Effect of Sand and Temperature on the Mechanical Properties of Jute Fabrics Reinforced Polypropylene Based Composite. J Bangladesh Chem Soc 2017; 29 (1): 18-23. [cited 2019 November 9] https://www.researchgate.net/ publication/323688996

Downloads

Published

2019-11-25

How to Cite

Piya, A. K. ., Raihan, M. M. ., & Khan, R. A. . (2019). Characterization of Natural Fibres and Their Polymer-based Composites. Journal of Research Updates in Polymer Science, 8, 35–51. https://doi.org/10.6000/1929-5995.2019.08.06

Issue

Section

Articles