Development of Biodegradable Packaging Materials from Bio-Based Raw Materials

Authors

  • Kazi M. Maraz Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, Bangladesh
  • Nanda Karmaker Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, Bangladesh
  • Romana Afrose Meem Department of Environmental Science, Stamford University Bangladesh, Dhaka, Bangladesh
  • Ruhul A. Khan Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, Bangladesh

DOI:

https://doi.org/10.6000/1929-5995.2019.08.09

Keywords:

Packaging films, Seaweed, Cellulose, Plant-based materials, Biodegradibility.

Abstract

Seaweed, creatures and cellulose based packaging materials are biodegradable and promising natural polymer and their films can be prepared from bio-based raw materials. This article reviews the basic information and recent developments of both seaweed, creatures, cellulose and plant based biopolymer materials as well as analyses the feasible formation of seaweed/creatures/cellulose/plant based biodegradable packaging films which possesses excellent mechanical strength and water resistance properties. Moreover, bio-based packaging films can prolong a product’s shelf life while maintaining its biodegradability. Additionally, the films show potential in contributing to the bio-economy. These type of bio-based materials exhibit interesting film-forming properties that can be used in biomedical application and for making composites for packaging. Bio-based films can be used for the large-scale applications in food packaging in place of synthetic petroleum based non-degradable packaging. Bio-based films have the potential to be used in textile and decoration paper industries also. Currently, bio packaging gains huge attention to the scientist and general people because this type packaging materials are environmental friendly products. Some of the viewpoints are highlighted for future developments and applications.

References

Khalil HP, Tye YY, Saurabh CK, Leh CP, Lai TK, Chong EW, Fazita MR, Hafiidz JM, Banerjee A, Syakir MI. Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. Express Polymer Letters. 2017; 11(4). https://doi.org/10.3144/expresspolymlett.2017.26

Cao Y, Wang B. Biodegradation of silk biomaterials. Interna-tional Journal of Molecular Sciences 2009; 10(4): 1514-24. https://doi.org/10.3390/ijms10041514 DOI: https://doi.org/10.3390/ijms10041514

Gade R, Tulasi MS, Bhai VA. Seaweeds: A novel biomaterial. International Journal of Pharmacy and Pharmaceutical Science 2013; 5: 40-44.

Gorczyca G, Tylingo R, Szweda P, Augustin E, Sadowska M, Milewski S. Preparation and characterization of genipin cross-linked porous chitosan–collagen–gelatin scaffolds using chitosan–CO2 solution. Carbohydrate Polymers 2014; 102: 901-11. https://doi.org/10.1016/j.carbpol.2013.10.060 DOI: https://doi.org/10.1016/j.carbpol.2013.10.060

Sudharsan K, Mohan CC, Babu PAS, Archana G, Sabina K, Sivarajan M, Sukumar M. Production and characterization of cellulose reinforced starch (CRT) films. International Journal of Biological Macromolecules 2016; 83: 385-395. https://doi.org/10.1016/j.ijbiomac.2015.11.037 DOI: https://doi.org/10.1016/j.ijbiomac.2015.11.037

Khan RA, Korehei R, Salem HJ, Darychuk N, Martinez DM, Olson JA. Fabrication and characterization of microfibrillated cellulose reinforced sodium alginate-based biodegradable films for packaging applications. Journal of Science & Te-chnology for Forest Products and Processes 2014; 95: 33-38 https://doi.org/10.1002/cjce.22648 DOI: https://doi.org/10.1002/cjce.22648

Zaman HU, Khan RA, Khan MA, Beg MD. Physico-mechanical and degradation properties of biodegradable photografted coir fiber with acrylic monomers. Polymer Bulletin 2013; 70(8): 2277-90. https://doi.org/10.1007/s00289-013-0950-z DOI: https://doi.org/10.1007/s00289-013-0950-z

Parveen I, Maraz KM, Mahmud MI, Khan RA. Seaweed Based Bio Polymeric Film and Their Application: A Review on Hydrocolloid Polysaccharides. Scientific Review 2019; 5(5): 93-102. https://doi.org/10.32861/sr.55.93.102 DOI: https://doi.org/10.32861/sr.55.93.102

Zaman HU, Khan MA, Khan RA. Modification and characterization of photo-cured sodium alginate film with ethylene glycol: effect of additives. Polymer Bulletin 2013; 70(1): 181-94. https://doi.org/10.1007/s00289-012-0796-9 DOI: https://doi.org/10.1007/s00289-012-0796-9

Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydrate Polymers 2012; 90(4): 1757-63. https://doi.org/10.1016/j.carbpol.2012.07.065 DOI: https://doi.org/10.1016/j.carbpol.2012.07.065

Ana RV, Ferreira V, Alves D, Isabel MC. Polysaccharide-Based Membranes in Food Packaging Application. Membranes 2016; 6: 21-25. https://doi.org/10.3390/membranes6020022 DOI: https://doi.org/10.3390/membranes6020022

Campos CA, Gerschenson LN, Flores SK. Development of edible coatings with antimicrobial activity. Food Bioprocess Technol 2011; 4: 849-875. https://doi.org/10.1007/s11947-010-0434-1 DOI: https://doi.org/10.1007/s11947-010-0434-1

Dong SC, Manjeet SC. Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science And Nutrition 2004; 44: 223-237. https://doi.org/10.1080/10408690490464276 DOI: https://doi.org/10.1080/10408690490464276

Mohajer S, Rezaei M, Hosseini SF. Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films. Carbohydrate Polymers 2017; 157: 784-93. https://doi.org/10.1016/j.carbpol.2016.10.061 DOI: https://doi.org/10.1016/j.carbpol.2016.10.061

Kołodziejska I, Piotrowska B, Bulge M, Tylingo R. Effect of transglutaminase and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide on the solubility of fish gelatin–chitosan films. Carbohydrate Polymers 2006; 65(4): 404-9. https://doi.org/10.1016/j.carbpol.2006.01.025 DOI: https://doi.org/10.1016/j.carbpol.2006.01.025

Parveen I, Mahmud MI, Khan RA. Biodegradable Natural Polymers for Biomedical Applications. Scientific Review 2019; 5(3): 67-80. https://doi.org/10.32861/sr.53.67.80 DOI: https://doi.org/10.32861/sr.53.67.80

Haroun AA. Preparation and Characterization of Biodegradable Thermoplastic Films Based on Collagen Hydrolyzate. Journal ofAppliedPolymer Science 2010; 115: 3230-3237. https://doi.org/10.1002/app.30670 DOI: https://doi.org/10.1002/app.30670

Wang LF, Rhim JW. Preparation and application of agar/alginate/collagen ternary blend functional food packaging films. International Journal of Biological Macromolecules 2015; 80: 460-8. https://doi.org/10.1016/j.ijbiomac.2015.07.007 DOI: https://doi.org/10.1016/j.ijbiomac.2015.07.007

Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids 2011; 25: 1813-1827. https://doi.org/10.1016/j.foodhyd.2011.02.007 DOI: https://doi.org/10.1016/j.foodhyd.2011.02.007

Zaman HU, Khan MA, Khan RA. Comparison of mechanical and degradation properties of EG and EGDMA grafted gelatin films. Journal of Adhesion Science and Technology 2013; 27(4): 413-22. https://doi.org/10.1080/01694243.2012.707450 DOI: https://doi.org/10.1080/01694243.2012.707450

Sultana S, Khan RA, Shahruzzaman M, Khan MA, Mustafa AI, Gafur MA. Effect of gamma radiation on the physico-and thermo-mechanical properties of gelatin-based films using 2-hydroxyethyl methacrylate (HEMA). Polymer-Plastics Technology and Engineering 2010; 49(7): 662-71. https://doi.org/10.1080/03602551003681804 DOI: https://doi.org/10.1080/03602551003681804

Gul-E-Noor F, Khan MA, Ghoshal S, Mazid RA, Sarwaruddin Chowdhury AM, Khan RA. Grafting of 2-ethylhexyl acrylate with urea on to gelatin film by gamma radiation. Journal of Macromolecular Science®, Part A: Pure and Applied Chemistry 2009; 46(6): 615-24. https://doi.org/10.1080/10601320902851926 DOI: https://doi.org/10.1080/10601320902851926

Sharmin N, Khan RA, Dussault D, Salmieri S, Akter N, Lacroix M. Effectiveness of silane monomer and gamma radiation on chitosan films and PCL-based composites. Radiation Physics and Chemistry 2012; 81(8): 932-5. https://doi.org/10.1016/j.radphyschem.2011.12.047 DOI: https://doi.org/10.1016/j.radphyschem.2011.12.047

Khan MA, Alam R, Rahman MA, Noor FG, Khan RA. Physico-Mechanical and Degradation Properties of Urea-Modified Chitosan Film Photocured with 1-Vinyl-2 Pyrrolidone. Polymer-Plastics Technology and Engineering 2009; 48: 1211-1220. https://doi.org/10.1080/03602550903149631 DOI: https://doi.org/10.1080/03602550903149631

Tuhin MO, Rahman N, Haque ME, Khan RA, Dafader NC, Islam R, Nurnabi M, Tonny W. Modification of mechanical and thermal property of chitosan–starch blend films. Radiation Physics and Chemistry 2012; 81(10): 1659-68. https://doi.org/10.1016/j.radphyschem.2012.04.015 DOI: https://doi.org/10.1016/j.radphyschem.2012.04.015

Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers 2012; 90(4): 1601-8. https://doi.org/10.1016/j.carbpol.2012.07.037 DOI: https://doi.org/10.1016/j.carbpol.2012.07.037

Sharmin N, Khan RA, Salmieri S, Dussault D, Bouchard J, Lacroix M. Modification and characterization of biodegradable methylcellulose films with trimethylolpropane trimethacrylate (TMPTMA) by γ radiation: effect of nanocrystalline cellulose. Journal of Agricultural and Food Chemistry 2012; 60(2): 623-9. https://doi.org/10.1021/jf203500s

Khan RA, Salmieri S, Dussault D, Sharmin N, Lacroix M. Mechanical, barrier, and interfacial properties of biodegradable composite films made of methylcellulose and poly (caprolactone). Journal of Applied Polymer Science 2012; 123(3): 1690-7. https://doi.org/10.1002/app.34655 DOI: https://doi.org/10.1002/app.34655

Sharmin N, Khan RU, Salmieri S, Dussault D, Bouchard J, Lacroix MO. Mechanical and Barrier Properties of Methylcellulose-based films grafted with Trimethylolpropane Trimethacrylate by Gamma Radiation: Effect of filling with cellulose nanocrystals; Journal of Science & Technology for Forest Products and Processes 2012; 60: 623-629. https://doi.org/10.1021/jf203500s DOI: https://doi.org/10.1021/jf203500s

Abdul KH, Tye YY, Saurabh CK, Leh CP, Lai TK, Chong EW, Fazita NM, Mohd HJ, Banerjee A, Syakir MI. Biodegradable polymer films from seaweed polysaccharides: a review on cellulose as a reinforcement material. eXPRESS Polym Lett 11: 244-265. https://doi.org/10.3144/expresspolymlett.2017.26 DOI: https://doi.org/10.3144/expresspolymlett.2017.26

Khan RA, Salmieri S, Dussault D, Uribe-Calderon J, Kamal MR, Safrany A, Lacroix M. Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. Journal of Agricultural and Food Chemistry 2010; 58(13): 7878-85. https://doi.org/10.1021/jf1006853 DOI: https://doi.org/10.1021/jf1006853

Hossain T, Hossain S, Molla JB, Khan RA, Sarwaruddin Chowdhury AM. Studies on the Degradation of Jute-Blended Cotton Fabric in Soil, Water and Ambient Atmosphere. International Journal of Environmental Chemistry 2017; 172: 904-914. https://doi.org/10.1080/10420150.2017.1417409 DOI: https://doi.org/10.1080/10420150.2017.1417409

Sukyai P, Anongjanya P, Bunyahwuthakul N, Kongsin K, Harnkarnsujarit N, Sukatta U, Sothornvit R, Chollakup R. Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Research International 2018; 107: 528-535. https://doi.org/10.1016/j.foodres.2018.02.052 DOI: https://doi.org/10.1016/j.foodres.2018.02.052

Chandel AK, da Silva SS, Carvalho W, Singh OV. Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio‐products. Journal of Chemical Technology & Biotechnology 2012; 87(1): 11-20. https://doi.org/10.1002/jctb.2742 DOI: https://doi.org/10.1002/jctb.2742

Ray D, Sarkar BK. Characterization of alkali‐treated jute fibers for physical and mechanical properties. Journal of Applied Polymer Science 2001; 80(7): 1013-20. https://doi.org/10.1002/app.1184 DOI: https://doi.org/10.1002/app.1184

Maity S, Singha K, Gon DP, Paul P, Singha M. A review on jute nonwovens: manufacturing, properties and applications. International Journal of Textile Science 2012; 1(5): 36-43.

Zaman HU, Khan MA, Khan RA, Sharmin N. Effect of chemical modifications on the performance of biodegradable photocured coir fiber. Fibers and Polymers 2011; 12(6): 727. https://doi.org/10.1007/s12221-011-0727-7 DOI: https://doi.org/10.1007/s12221-011-0727-7

Zaman HU, Khan MA, Khan RA, Ghoshal S. Effect of ionizing and non-ionizing preirradiations on physico-mechanical properties of coir fiber grafting with methylacrylate. Fibers and Polymers 2012; 13(5): 593-9. https://doi.org/10.1007/s12221-012-0593-y DOI: https://doi.org/10.1007/s12221-012-0593-y

Bolduc S, Jung K, Venkata P, Ashokcline M, Jayasinghe R, Baillie C, Lessard L. Banana fiber/low-density polyethylene recycled composites for third world eco-friendly construction applications–Waste for life project Sri Lanka. Journal of Reinforced Plastics and Composites 2018; 37(21): 1322-31. https://doi.org/10.1177/0731684418791756 DOI: https://doi.org/10.1177/0731684418791756

Hailu M, Workneh TS, Belew D. Effect of packaging materials on shelf life and quality of banana cultivars (Musa spp.). Journal of Food Science and Technology 2014; 51(11): 2947-63 https://doi.org/10.1007/s13197-012-0826-5 DOI: https://doi.org/10.1007/s13197-012-0826-5

Weber CJ, Haugaard V, Festersen R, Bertelsen G. Production and applications of biobased packaging materials for the food industry. Food Additives & Contaminants 2002; 19(S1): 172-7. https://doi.org/10.1080/02652030110087483 DOI: https://doi.org/10.1080/02652030110087483

Begum T, Mahmud J, Islam MN, Khan RA. Essential Oils and Biodegradable Packaging Materials: Application on Food Preservations. Scientific Review 2019; 5(1): 1-7.

Akter N, Saha S, Hossain FM, Quader FB, Alamgir P, Khan RA. Modification and Characterization of Biodegradable Chitosan/Starch-Based Films with Monomer 1, 4-Butanediol Diacrylate (BDDA) by Gamma Radiation. Journal of Research Updates in Polymer Science 2013; 2(3): 155-67. DOI: https://doi.org/10.6000/1929-5995.2013.02.03.3

Huq T, Khan A, Dussault D, Salmieri S, Khan RA, Lacroix M. Effect of gamma radiation on the physico-chemical properties of alginate-based films and beads. Radiation Physics and Chemistry. 2012; 81(8): 945-8. https://doi.org/10.1016/j.radphyschem.2011.11.055

Takala PN, Salmieri S, Boumail A, Khan RA, Vu KD, Chauve G, Bouchard J, Lacroix M. Antimicrobial effect and physicochemical properties of bioactive trilayer polycaprolactone/methylcellulose-based films on the growth of foodborne pathogens and total microbiota in fresh broccoli. Journal of Food Engineering 2013; 116(3): 648-55. https://doi.org/10.1016/j.jfoodeng.2013.01.005 DOI: https://doi.org/10.1016/j.jfoodeng.2013.01.005

Huq T, Khan A, Dussault D, Salmieri S, Khan RA, Lacroix M. Effect of gamma radiation on the physico-chemical properties

of alginate-based films and beads. Radiation Physics and Chemistry 2012; 81(8): 945-8. https://doi.org/10.1016/j.radphyschem.2011.11.055 DOI: https://doi.org/10.1016/j.radphyschem.2011.11.055

Ruban SW. Biobased packaging-application in meat industry. Vet World 2009; 2(2): 79-82. https://doi.org/10.5455/vetworld.2009.79-82 DOI: https://doi.org/10.5455/vetworld.2009.79-82

Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal 2015; 65: 252-67. https://doi.org/10.1016/j.eurpolymj.2014.11.024 DOI: https://doi.org/10.1016/j.eurpolymj.2014.11.024

Zaman HU, Khan MA, Khan RA. Studies on the thermo-mechanical properties of gelatin based films using 2-hydroxyethyl methacrylate by gamma radiation. Open Journal of Composite Materials 2012; 2(01): 15. https://doi.org/10.4236/ojcm.2012.21003 DOI: https://doi.org/10.4236/ojcm.2012.21003

Umaiya K, Chowdhury AS, Khan RA. Fabrication and Characterization of Antibacterial and Biodegradable Facial Tissue Papers Using Bio-Based Raw Materials: Effect of Glycerin. Journal of Research Updates in Polymer Science 2017; 6(4): 126-33. https://doi.org/10.6000/1929-5995.2017.06.04.2 DOI: https://doi.org/10.6000/1929-5995.2017.06.04.2

Popa M, Mitelut A, Niculita P, Geicu M, Ghidurus M, Turtoi M. Biodegradable materials for food packaging applications. Journal of Environmental Protection and Ecology 2011; 12(4): 1825-34.

Yuqiu Y, Jingjing W, Chunxiao L, Houwei W, Derong L. Research on Biodegradable Films and Their Comparison with Ordinary Films. Advances in Engineering Research 2018; 166: 743-746.

Fink H-P, Weigel P, Purz HJ, Ganster J. Structure formation of regenerated cellulose materials from NMMO solutions. Progress in Polymer Science 2001; 26: 1473-1524. https://doi.org/10.1016/S0079-6700(01)00025-9 DOI: https://doi.org/10.1016/S0079-6700(01)00025-9

Chandel AK, Singh OV, Chandrasekhar G, Rao LV, Narasu ML. Key-drivers influencing the commercialization of ethanol based biorefineries. J Comm Biotechnol 2010; 16: 239-257. https://doi.org/10.1057/jcb.2010.5 DOI: https://doi.org/10.1057/jcb.2010.5

Alves C, Ferra˜o PMC, Silva AJ, Reis LG, Freitas M, Rodrigues LB, Alves DE. Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production 2010; 18: 313-327. https://doi.org/10.1016/j.jclepro.2009.10.022 DOI: https://doi.org/10.1016/j.jclepro.2009.10.022

Miah MJ, Khan MA, Khan RA. Fabrication and characterization of jute fiber reinforced low density polyethylene based composites: effects of chemical treatment. J Sci Res 2011; 3(2): 249-259. https://doi.org/10.3329/jsr.v3i2.6763 DOI: https://doi.org/10.3329/jsr.v3i2.6763

Arafat KMY, Nayeem J, Quadery AH, Quaiyyum MA, Sarwar Jahan M. Handmade paper from waste banana fibre. Bangladesh J Sci Ind Res 2018; 53(2) 83-88. https://doi.org/10.3329/bjsir.v53i2.36668 DOI: https://doi.org/10.3329/bjsir.v53i2.36668

Downloads

Published

2019-12-20

How to Cite

Maraz, K. M. ., Karmaker, N. ., Meem, R. A. ., & Khan, R. A. . (2019). Development of Biodegradable Packaging Materials from Bio-Based Raw Materials. Journal of Research Updates in Polymer Science, 8, 66–84. https://doi.org/10.6000/1929-5995.2019.08.09

Issue

Section

Articles