Predictive Power of a Body Shape Index (ABSI) for Diabetes Mellitus and Arterial Hypertension in Peru: Demographic and Health Survey Analysis - 2020

Authors

  • Andony Ojeda Heredia Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
  • Jenny Raquel Torres-Malca Universidad Tecnológica del Perú, Lima, Peru https://orcid.org/0000-0002-7199-8475
  • Fiorella Elvira Zuzunaga-Montoya Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
  • Victor Juan Vera-Ponce Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
  • Liliana Cruz-Ausejo Universidad Peruana Cayetano Heredia, Lima, Peru https://orcid.org/0000-0001-7506-4939
  • Jhony A. De la Cruz-Vargas Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú https://orcid.org/0000-0002-5592-0504

DOI:

https://doi.org/10.6000/1929-6029.2022.11.14

Keywords:

Diabetes mellitus, hypertension, abdominal circumference, body weight, body height (Source: MeSH NLM)

Abstract

Introduction: Given the relationship between obesity and type 2 diabetes mellitus (T2DM) and hypertension, an indicator of body fat, A Body Shape Index (ABSI), has been considered to have apparent predictive power for these diseases.

Objective: To determine the predictive power of the ABSI for DMT2 and hypertension in Peru through the analysis of the Demographic and Health Survey-2020 (ENDES-by its acronym in Spanish-2020).

Methods: Cross-sectional analytical study of the ENDES-2020. The variables evaluated were ABSI, body mass index, high abdominal waist, waist-to-height ratio, body roundness index (BRI) and conicity index (COI). Areas under the curves (AUC) together with their 95% confidence interval (95%CI) were used to present each index.

Results: A total of 19 984 subjects were studied. Regarding hypertension, the highest AUC was presented by the COI: AUC=0.707 (95%CI 0.694-0.719). While the ABSI obtained the penultimate place: AUC=0.702 (95% CI 0.689-0.715). In case of DM2, the highest ABC was presented by BRI: AUC=0.716 (95%CI 0.689-0.743); while ABSI obtained the second place: AUC=0.687 (95%CI 0.658-0.717).

Conclusions: The results demonstrate that ABSI is not a good predictor for hypertension and DMT2 in the Peruvian population. If these findings are confirmed by other studies, its use would not be recommended for these diseases, and other anthropometric indicators that could perform better should be further explored.

References

Tsimihodimos V, Gonzalez-Villalpando C, Meigs JB, Ferrannini E. Hypertension and Diabetes Mellitus: Coprediction and Time Trajectories. Hypertens Dallas Tex 1979 2018; 71(3): 422-8. https://doi.org/10.1161/HYPERTENSIONAHA.117.10546 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.117.10546

GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Lond Engl 2018; 392(10159): 1923-94. https://doi.org/10.1016/S0140-6736(18)32225-6 DOI: https://doi.org/10.1016/S0140-6736(18)32225-6

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14(2): 88-98. https://doi.org/10.1038/nrendo.2017.151 DOI: https://doi.org/10.1038/nrendo.2017.151

INEI - Perú: Enfermedades No Transmisibles y Transmisibles, 2020 [Internet]. [citado el 30 de noviembre de 2021]. Disponible en: https://www.inei.gob.pe/media/ MenuRecursivo/publicaciones_digitales/Est/Lib1796/

Carrillo-Larco R, Bernabé-Ortiz A. Diabetes mellitus tipo 2 en Perú: una revisión sistemática sobre la prevalencia e incidencia en población general. Rev Peru Med Exp Salud Publica 2019; 36(1): 26-36. https://doi.org/10.17843/rpmesp.2019.361.4027 DOI: https://doi.org/10.17843/rpmesp.2019.361.4027

Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol Rev 2019; 99(4): 1701-63. https://doi.org/10.1152/physrev.00034.2018 DOI: https://doi.org/10.1152/physrev.00034.2018

Krakauer NY, Krakauer JC. A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLOS ONE 2012; 7(7): e39504. https://doi.org/10.1371/journal.pone.0039504 DOI: https://doi.org/10.1371/journal.pone.0039504

Bertoli S, Leone A, Krakauer NY, Bedogni G, Vanzulli A, Redaelli VI, et al. Association of Body Shape Index (ABSI) with cardio-metabolic risk factors: A cross-sectional study of 6081 Caucasian adults. PLoS ONE 2017; 12(9): e0185013. https://doi.org/10.1371/journal.pone.0185013 DOI: https://doi.org/10.1371/journal.pone.0185013

Biolo G, Di Girolamo FG, Breglia A, Chiuc M, Baglio V, Vinci P, et al. Inverse relationship between “a body shape index” (ABSI) and fat-free mass in women and men: Insights into mechanisms of sarcopenic obesity. Clin Nutr Edinb Scotl 2015; 34(2): 323-7. https://doi.org/10.1016/j.clnu.2014.03.015 DOI: https://doi.org/10.1016/j.clnu.2014.03.015

Gažarová M, Galšneiderová M, Mečiarová L. Obesity diagnosis and mortality risk based on a body shape index (ABSI) and other indices and anthropometric parameters in university students. Rocz Panstw Zakl Hig 2019; 70(3): 267-75. https://doi.org/10.32394/rpzh.2019.0077 DOI: https://doi.org/10.32394/rpzh.2019.0077

Tate J, Knuiman M, Davis WA, Davis TME, Bruce DG. A comparison of obesity indices in relation to mortality in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia 2020; 63(3): 528-36. https://doi.org/10.1007/s00125-019-05057-8 DOI: https://doi.org/10.1007/s00125-019-05057-8

Chang Y, Guo X, Chen Y, Guo L, Li Z, Yu S, et al. A body shape index and body roundness index: two new body indices to identify diabetes mellitus among rural populations in northeast China. BMC Public Health 2015; 15: 794. https://doi.org/10.1186/s12889-015-2150-2 DOI: https://doi.org/10.1186/s12889-015-2150-2

Wang F, Chen Y, Chang Y, Sun G, Sun Y. New anthropometric indices or old ones: which perform better in estimating cardiovascular risks in Chinese adults. BMC Cardiovasc Disord 2018; 18(1): 14. https://doi.org/10.1186/s12872-018-0754-z DOI: https://doi.org/10.1186/s12872-018-0754-z

Tian S, Zhang X, Xu Y, Dong H. Feasibility of body roundness index for identifying a clustering of cardiometabolic abnormalities compared to BMI, waist circumference and other anthropometric indices: the China Health and Nutrition Survey, 2008 to 2009. Medicine (Baltimore) 2016; 95(34): e4642. https://doi.org/10.1097/MD.0000000000004642 DOI: https://doi.org/10.1097/MD.0000000000004642

He S, Chen X. Could the new body shape index predict the new onset of diabetes mellitus in the Chinese population? PloS One 2013; 8(1): e50573. https://doi.org/10.1371/journal.pone.0050573 DOI: https://doi.org/10.1371/journal.pone.0050573

Fujita M, Sato Y, Nagashima K, Takahashi S, Hata A. Predictive power of a body shape index for development of diabetes, hypertension, and dyslipidemia in Japanese adults: a retrospective cohort study. PloS One 2015; 10(6): e0128972. https://doi.org/10.1371/journal.pone.0128972 DOI: https://doi.org/10.1371/journal.pone.0128972

INEI - Perú: Encuesta Demográfica y de Salud Familiar-ENDES 2020 [Internet]. [citado el 30 de noviembre de 2021]. Disponible en: https://www.inei.gob.pe/media/Menu Recursivo/publicaciones_digitales/Est/Lib1795/

Kajikawa M, Maruhashi T, Kishimoto S, Yamaji T, Harada T, Hashimoto Y, et al. A body shape index is associated with endothelial dysfunction in both men and women. Sci Rep 2021; 11(1): 17873. https://doi.org/10.1038/s41598-021-97325-0 DOI: https://doi.org/10.1038/s41598-021-97325-0

Stefanescu A, Revilla L, Lopez T, Sanchez SE, Williams MA, Gelaye B. Using A Body Shape Index (ABSI) and Body Roundness Index (BRI) to predict risk of metabolic syndrome in Peruvian adults. J Int Med Res 2020; 48(1): 300060519848854. https://doi.org/10.1177/0300060519848854 DOI: https://doi.org/10.1177/0300060519848854

Cheung YB. “A Body Shape Index” in middle-age and older Indonesian population: scaling exponents and association with incident hypertension. PloS One 2014; 9(1): e85421. https://doi.org/10.1371/journal.pone.0085421 DOI: https://doi.org/10.1371/journal.pone.0085421

Choi JR, Ahn SV, Kim JY, Koh SB, Choi EH, Lee GY, et al. Comparison of various anthropometric indices for the identification of a predictor of incident hypertension: the ARIRANG study. J Hum Hypertens 2018; 32(4): 294-300. https://doi.org/10.1038/s41371-018-0043-4 DOI: https://doi.org/10.1038/s41371-018-0043-4

Yang J, Wang F, Han X, Yuan J, Yao P, Liang Y, et al. Different anthropometric indices and incident risk of hypertension in elderly population: a prospective cohort study. Zhonghua Yu Fang Yi Xue Za Zhi 2019; 53(3): 272-8.

Calderón-García JF, Roncero-Martín R, Rico-Martín S, De Nicolás-Jiménez JM, López-Espuela F, Santano-Mogena E, et al. Effectiveness of Body Roundness Index (BRI) and a Body Shape Index (ABSI) in Predicting Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. Int J Environ Res Public Health 2021; 18(21): 11607. https://doi.org/10.3390/ijerph182111607 DOI: https://doi.org/10.3390/ijerph182111607

Nascimento-Souza MA, Lima-Costa MF, Peixoto SV. “A body shape index” and its association with arterial hypertension and diabetes mellitus among Brazilian older adults: National Health Survey (2013). Cad Saúde Pública [Internet] 2019 [citado el 30 de noviembre de 2021]; 35. https://doi.org/10.1590/0102-311x00175318 DOI: https://doi.org/10.1590/0102-311x00175318

Pastorino S, Richards M, Hardy R, Abington J, Wills A, Kuh D, et al. Validation of self-reported diagnosis of diabetes in the 1946 British birth cohort. Prim Care Diabetes 2015; 9(5): 397-400. https://doi.org/10.1016/j.pcd.2014.05.003 DOI: https://doi.org/10.1016/j.pcd.2014.05.003

Fontanelli M de M, Teixeira JA, Sales CH, Castro MA de, Cesar CLG, Alves MCGP, et al. Validation of self-reported diabetes in a representative sample of São Paulo city. Rev Saude Publica 2017; 51: 20. https://doi.org/10.1590/s1518-8787.2017051006378 DOI: https://doi.org/10.1590/s1518-8787.2017051006378

Downloads

Published

2022-10-24

How to Cite

Heredia, A. O. ., Torres-Malca, J. R. ., Zuzunaga-Montoya, F. E. ., Vera-Ponce, V. J. ., Cruz-Ausejo, L. ., & Cruz-Vargas, J. A. D. la . (2022). Predictive Power of a Body Shape Index (ABSI) for Diabetes Mellitus and Arterial Hypertension in Peru: Demographic and Health Survey Analysis - 2020. International Journal of Statistics in Medical Research, 11, 114–120. https://doi.org/10.6000/1929-6029.2022.11.14

Issue

Section

General Articles

Most read articles by the same author(s)

1 2 > >>