Diagnostic Accuracy of Anthropometric Markers of Obesity for Prediabetes: A Systematic Review and Meta-Analysis

Authors

  • Víctor Juan Vera-Ponce Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú https://orcid.org/0000-0003-4075-9049
  • Fiorella E. Zuzunaga-Montoya Universidad Científica del Sur, Lima, Perú
  • Joan A. Loayza-Castro Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
  • Andrea P. Ramirez-Ortega Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
  • Jenny Raquel Torres-Malca Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
  • Rosa A. García-Lara Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
  • Cori Raquel Iturregui Paucar Universidad Tecnológica del Perú, Lima, Perú
  • Mario J. Valladares-Garrido Universidad Continental Lima, Perú
  • Jhony A. De La Cruz-Vargas Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú

DOI:

https://doi.org/10.6000/1929-6029.2023.12.15

Keywords:

Prediabetic state, body weights and measures, body mass index, waist circumference, waist-height ratio, sensitivity and specificity (source: MeSH NLM)

Abstract

Introduction: Prediabetes is a significant public health concern due to its high risk of progressing to diabetes. Anthropometric measures of obesity, including body mass index (BMI), waist circumference (WC), and waist-to-height ratio (WHtR) have been demonstrated as key risk factors in the development of prediabetes. However, there is a lack of clarity on the diagnostic accuracy and cut-off points of these measures.

Objective: To determine the diagnostic accuracy of these anthropometric measures for their most effective use in identifying prediabetes.

Methodology: A systematic review (SR) with metanalysis of observational studies was carried out. The search was conducted in four databases: Pubmed/Medline, SCOPUS, Web of Science, and EMBASE. For the meta-analysis, sensitivity and specificity, together with their 95% confidence intervals (CI 95%) were calculated.

Results: Among all the manuscripts chosen for review, we had four cross-sectional studies, and three were classified as cohort studies.

The forest plots showed the combined sensitivity and specificity for both cross-sectional and cohort studies. For cross-sectional studies, the values were as follows: BMI had a sensitivity of 0.63 and specificity of 0.56, WC had a sensitivity of 0.59 and specificity of 0.58, and WHtR had a sensitivity of 0.63 and specificity of 0.73. In the cohort studies, the combined sensitivity and specificity were: BMI at 0.70 and 0.45, WC at 0.68 and 0.56, and WHtR at 0.68 and 0.56, respectively. All values are provided with 95% confidence intervals.

Conclusions: This systematic review and meta-analysis evaluated the diagnostic accuracy of BMI, WC, and WHtR in identifying prediabetes. The results showed variations in sensitivity and specificity, with WHtR having the highest specificity in cross-sectional studies and BMI having improved sensitivity in cohort studies.

References

Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet 2012; 379(9833): 2279-90. https://doi.org/10.1016/S0140-6736(12)60283-9 DOI: https://doi.org/10.1016/S0140-6736(12)60283-9

Ezquerra-Lázaro I, Cea-Soriano L, Giraldez-García C, Ruiz A, Franch-Nadal J, Diez-Espino J, et al. Lifestyle factors do not explain the difference on diabetes progression according to type of prediabetes: Results from a Spanish prospective cohort of prediabetic patients. Diabetes Res Clin Pract 2019; 153: 66-75. https://doi.org/10.1016/j.diabres.2019.05.033 DOI: https://doi.org/10.1016/j.diabres.2019.05.033

Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 2007; 30(3): 753-9. https://doi.org/10.2337/dc07-9920 DOI: https://doi.org/10.2337/dc07-9920

Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, et al. Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013. JAMA 2017; 317(24): 2515-23. https://doi.org/10.1001/jama.2017.7596 DOI: https://doi.org/10.1001/jama.2017.7596

Yip WCY, Sequeira IR, Plank LD, Poppitt SD. Prevalence of Pre-Diabetes across Ethnicities: A Review of Impaired Fasting Glucose (IFG) and Impaired Glucose Tolerance (IGT) for Classification of Dysglycaemia. Nutrients 2017; 9(11): 1273. https://doi.org/10.3390/nu9111273 DOI: https://doi.org/10.3390/nu9111273

NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016; 387(10027): 1513-30.

Sadeghi M, Talaei M, Parvaresh Rizi E, Dianatkhah M, Oveisgharan S, Sarrafzadegan N. Determinants of incident prediabetes and type 2 diabetes in a 7-year cohort in a developing country: The Isfahan Cohort Study. J Diabetes 2015; 7(5): 633-41. https://doi.org/10.1111/1753-0407.12236 DOI: https://doi.org/10.1111/1753-0407.12236

Hadaegh F, Derakhshan A, Zafari N, Khalili D, Mirbolouk M, Saadat N, et al. Pre-diabetes tsunami: incidence rates and risk factors of pre-diabetes and its different phenotypes over 9 years of follow-up. Diabet Med 2017; 34(1): 69-78. https://doi.org/10.1111/dme.13034 DOI: https://doi.org/10.1111/dme.13034

Hashemi SJ, Karandish M, Cheraghian B, Azhdari M. Prevalence of prediabetes and associated factors in southwest iran: results from Hoveyzeh cohort study. BMC Endocr Disord 2022; 22(1): 72. https://doi.org/10.1186/s12902-022-00990-z DOI: https://doi.org/10.1186/s12902-022-00990-z

Zhu X, Yang Z, He Z, Hu J, Yin T, Bai H, et al. Factors correlated with targeted prevention for prediabetes classified by impaired fasting glucose, impaired glucose tolerance, and elevated HbA1c: A population-based longitudinal study. Front Endocrinol (Lausanne) 2022; 13: 965890. https://doi.org/10.3389/fendo.2022.965890 DOI: https://doi.org/10.3389/fendo.2022.965890

Dugani SB, Girardo ME, De Filippis E, Mielke MM, Vella A. Risk Factors and Wellness Measures Associated with Prediabetes and Newly Diagnosed Type 2 Diabetes Mellitus in Hispanic Adults. Metab Syndr Relat Disord 2021; 19(3): 180-9. https://doi.org/10.1089/met.2020.0102 DOI: https://doi.org/10.1089/met.2020.0102

Wade AN, Hambleton IR, Hennis AJM, Howitt C, Jeyaseelan SM, Ojeh NO, et al. Anthropometric cut-offs to identify hyperglycemia in an Afro-Caribbean population: a cross-sectional population-based study from Barbados. BMJ Open Diabetes Research and Care 2021; 9(1): e002246. https://doi.org/10.1136/bmjdrc-2021-002246 DOI: https://doi.org/10.1136/bmjdrc-2021-002246

Ganguly SS, Sarkar K, Al-Adawi S, Al-Mahrezi AA. Screening for dysglycaemia using anthropometric indices in an adult population in Oman. East Mediterr Health J 2018; 24(3): 254-61. https://doi.org/10.26719/2018.24.3.254 DOI: https://doi.org/10.26719/2018.24.3.254

Xu F, Wang YF, Lu L, Liang Y, Wang Z, Hong X, et al. Comparison of anthropometric indices of obesity in predicting subsequent risk of hyperglycemia among Chinese men and women in Mainland China. Asia Pac J Clin Nutr 2010; 19(4): 586-93.

Sánchez M, Sánchez E, Bermúdez-López M, Torres G, Farràs-Sallés C, Pamplona R, et al. Clinical Usefulness of Anthropometric Indices to Predict the Presence of Prediabetes. Data from the ILERVAS Cohort. Nutrients 2021; 13(3): 1002. https://doi.org/10.3390/nu13031002 DOI: https://doi.org/10.3390/nu13031002

Zhang F, Wan Q, Cao H, Tang L, Li D, Lü Q, et al. Identical anthropometric characteristics of impaired fasting glucose combined with impaired glucose tolerance and newly diagnosed type 2 diabetes: anthropometric indicators to predict hyperglycaemia in a community-based prospective cohort study in southwest China. BMJ Open 2018; 8(5): e019735. https://doi.org/10.1136/bmjopen-2017-019735 DOI: https://doi.org/10.1136/bmjopen-2017-019735

Ding J, Chen X, Bao K, Yang J, Liu N, Huang W, et al. Assessing different anthropometric indices and their optimal cutoffs for prediction of type 2 diabetes and impaired fasting glucose in Asians: The Jinchang Cohort Study. J Diabetes 2020; 12(5): 372-84. https://doi.org/10.1111/1753-0407.13000 DOI: https://doi.org/10.1111/1753-0407.13000

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6(7): e1000097. https://doi.org/10.1371/journal.pmed.1000097 DOI: https://doi.org/10.1371/journal.pmed.1000097

World Health Organization, Federation ID. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia : report of a WHO/IDF consultation [Internet]. World Health Organization; 2006 [citado el 30 de enero de 2023]. Disponible en: https://apps.who.int/iris/handle/ 10665/43588

American Diabetes Association. Standards of Medical Care in Diabetes—2022 Abridged for Primary Care Providers. Clinical Diabetes 2022; 40(1): 10-38. https://doi.org/10.2337/cd22-as01 DOI: https://doi.org/10.2337/cd22-as01

Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21(11): 1539-58. https://doi.org/10.1002/sim.1186 DOI: https://doi.org/10.1002/sim.1186

Cochrane Handbook for Systematic Reviews of Interventions [Internet]. [citado el 27 de noviembre de 2021]. Disponible en: https://training.cochrane.org/handbook

Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011; 155(8): 529-36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009 DOI: https://doi.org/10.7326/0003-4819-155-8-201110180-00009

Chu AHY, Aris IM, Ng S, Loy SL, Bernard JY, Tint MT, et al. Anthropometric measures and HbA1c to detect dysglycemia in young Asian women planning conception: The S-PRESTO cohort. Sci Rep 2020; 10(1): 9228. https://doi.org/10.1038/s41598-020-66147-x DOI: https://doi.org/10.1038/s41598-020-66147-x

Zhao Q, Zhang K, Li Y, Zhen Q, Shi J, Yu Y, et al. Capacity of a body shape index and body roundness index to identify diabetes mellitus in Han Chinese people in Northeast China: a cross-sectional study. Diabet Med 2018; 35(11): 1580-7. https://doi.org/10.1111/dme.13787 DOI: https://doi.org/10.1111/dme.13787

Luna Hernández JF, Marín Velázquez J, Ramírez- Díaz M del P, Montes de Oca Juárez O. Predictores antropométricos asociados a hiperglucemia en mujeres adultas zapotecas del Istmo de Tehuantepec, Oaxaca: un estudio transversal. Rev esp nutr comunitaria 2022; 1-12. https://pesquisa.bvsalud.org/portal/resource/pt/ibc-205804

Xia M-F, Lin H-D, Chen L-Y, Wu L, Ma H, Li Q, et al. Association of visceral adiposity and its longitudinal increase with the risk of diabetes in Chinese adults: A prospective cohort study. Diabetes Metab Res Rev 2018; 34(7): e3048. https://doi.org/10.1002/dmrr.3048 DOI: https://doi.org/10.1002/dmrr.3048

Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Frontiers in Cardiovascular Medicine 2020; 7. https://doi.org/10.3389/fcvm.2020.00022 DOI: https://doi.org/10.3389/fcvm.2020.00022

Wu H, Ballantyne CM. Metabolic Inflammation and Insulin Resistance in Obesity. Circulation Research 2020; 126(11): 1549-64. https://doi.org/10.1161/CIRCRESAHA.119.315896 DOI: https://doi.org/10.1161/CIRCRESAHA.119.315896

Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr Physiol 2018; 9(1): 1-58. https://doi.org/10.1002/cphy.c170040 DOI: https://doi.org/10.1002/cphy.c170040

Kodama S, Horikawa C, Fujihara K, Heianza Y, Hirasawa R, Yachi Y, et al. Comparisons of the strength of associations with future type 2 diabetes risk among anthropometric obesity indicators, including waist-to-height ratio: a meta-analysis. Am J Epidemiol 2012; 176(11): 959-69. https://doi.org/10.1093/aje/kws172 DOI: https://doi.org/10.1093/aje/kws172

Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 2021; 320(3): C375-91. https://doi.org/10.1152/ajpcell.00379.2020 DOI: https://doi.org/10.1152/ajpcell.00379.2020

Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. The Lancet 2017; 390(10113): 2627-42. https://doi.org/10.1016/S0140-6736(17)32129-3 DOI: https://doi.org/10.1016/S0140-6736(17)32129-3

Li Y, Zou Z, Luo J, Ma J, Ma Y, Jing J, et al. The predictive value of anthropometric indices for cardiometabolic risk factors in Chinese children and adolescents: A national multicenter school-based study. PLoS One 2020; 15(1): e0227954. https://doi.org/10.1371/journal.pone.0227954 DOI: https://doi.org/10.1371/journal.pone.0227954

Heianza Y, Hara S, Arase Y, Saito K, Fujiwara K, Tsuji H, et al. HbA1c 5·7-6·4% and impaired fasting plasma glucose for diagnosis of prediabetes and risk of progression to diabetes in Japan (TOPICS 3): a longitudinal cohort study. Lancet 2011; 378(9786): 147-55. https://doi.org/10.1016/S0140-6736(11)60472-8 DOI: https://doi.org/10.1016/S0140-6736(11)60472-8

Matsui T, Okada H, Hamaguchi M, Kurogi K, Murata H, Ito M, et al. The association between the reduction of body weight and new-onset type 2 diabetes remission in middle-aged Japanese men: Population-based Panasonic cohort study 8. Front Endocrinol (Lausanne) 2022; 13: 1019390. https://doi.org/10.3389/fendo.2022.1019390 DOI: https://doi.org/10.3389/fendo.2022.1019390

Downloads

Published

2023-09-19

How to Cite

Vera-Ponce, V. J. ., Zuzunaga-Montoya, F. E. ., Loayza-Castro, J. A. ., Ramirez-Ortega, A. P. ., Torres-Malca, J. R. ., García-Lara, R. A. ., Iturregui Paucar, C. R. ., Valladares-Garrido, M. J. ., & Cruz-Vargas, J. A. D. L. . (2023). Diagnostic Accuracy of Anthropometric Markers of Obesity for Prediabetes: A Systematic Review and Meta-Analysis. International Journal of Statistics in Medical Research, 12, 115–125. https://doi.org/10.6000/1929-6029.2023.12.15

Issue

Section

General Articles

Most read articles by the same author(s)