jcst


homepageImage en US

Characteristics of CVD Grown Diamond Films on Langasite Substrates   - Pages 41-51

Awadesh Kumar Mallik, Snigdha Roy, Vamsi Krishna Balla, Sandip Bysakh and Radhaballabh Bhar

DOI: https://doi.org/10.6000/2369-3355.2019.06.02.2

Published: 08 January 2020

 


Abstract: 
Surface acoustic wave (SAW) devices consist of a piezoelectric substrate with interdigitated (IDT) electrodes. These devices can be used to fabricate wireless and passive sensors that can be mounted in remote and/or inaccessible places. If encapsulated with CVD diamond, the SAW devices can be made to operate under extremely hostile conditions. The piezoelectric layer (AlN, ZnO etc.) deposited on the diamond or an inverse system can increase the frequency of the SAW device. Most piezoelectric materials (such as quartz) show phase transition temperatures below diamond deposition temperature (650o-1100ºC), preventing their use as a substrate for diamond growth. Langasite La3Ga5SiO14 (LGS) is recently fabricated piezoelectric material that can withstand high temperatures without being deteriorated. LGS does not have phase transitions up to its melting point of 1470 °C.

Here we report the deposition of diamond films by microwave plasma CVD in methane-hydrogen gas mixtures on polished and rough surfaces of the LGS substrates seeded with nanodiamonds. No buffer layer between the substrate and the coating had been used. The effect of substrate pretreatment (PT) was also investigated on the growth behaviour of diamond films on LGS. The resulting films are characterised by Raman spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS). The effect of substrate roughness on the growth behaviour was found to favour bigger grain sizes on the unpolished substrates. Whereas, the effect of substrate pretreatment (PT) was found to produce unique microstructural features with better polycrystalline diamond (PCD) quality than on the substrates without PT. Raman signals confirm the deposition of PCD in all the cases but the X-ray results interestingly show new phase formation of hcp and rhombohedral diamond lattice structures under CVD growth environment.

Keywords: Microwave plasma CVD, polycrystalline diamond, langasite, SAW.

Download


homepageImage en US

Review on the Use of Nanofillers in Polyurethane Coating Systems for Different Coating Applications  - Pages 22-35

Gauri P. Deshmukh and Prakash A. Mahanwar

DOI: https://doi.org/10.6000/2369-3355.2019.06.01.3

Published: 15 November 2019

 


Abstract: 
Polyurethane (PU) is the most common, versatile and researched material in the world. It is widely used in many applications such as medical, automotive and industrial fields. It can be found in products such as furniture, coatings, adhesives, construction materials, Paints, elastomers, insulators, elastic fibres, foams, integral skins, etc. because it has extraordinary properties and the facility to tailor-made various formulations according to property requirement using different raw materials which are available. Though the material is having fascinating properties the material is also associated with various problems such as inferior coating properties. Inorganic pigments and fillers are dispersed in organic components and binders to improve different properties of the coating. This paper is intended to review the various nanofillers used in different PU coating systems. It gives a general introduction about the various fillers and it's classification, Mechanism by which the filler enhances the mechanical properties of the materials, various factors which affect the properties of the coatings. Various methods of incorporation of fillers in the coating systems are discussed. Various nanofillers such as SiO2(Silicon Dioxide), TiO2(Titanium Dioxide), AL2O3(Aluminium Oxide), antimony doped tin oxide (ATO), BaSO4(Barium Sulphate), FE2O3(Ferric Oxide) as well as carbon nanotubes, graphene derived fillers and nano-diamonds are discussed in detail. The importance and effect of surface modification of fillers to enhance coating properties are also discussed along with challenges associated with polyurethane coatings and future trends.

Keywords: Polyurethane (PU), Coating, Nano filler, Carbon nanotube, carbon nanofiber, Mechanism.

Download


homepageImage en US

Graphene-Based Sensors for Air Quality Monitoring – Preliminary Development Evaluation  - Pages 10-21

Denise Machado, Maria J. Hortigüela, Gonzalo Otero-Irurueta, Paula A.A.P. Marques, Ricardo Silva, Rui F. Silva and Victor Neto

DOI: https://doi.org/10.6000/2369-3355.2019.06.01.2

Published: 15 November 2019

 


Abstract: 
Indoor air pollution can induce adverse health effects on building occupants and pose a significant role in health worldwide. To avoid such effects, it is extremely important to monitor and control common indoor pollutants such as CO2, VOCs, and relative humidity. Therefore, this work focuses on recent advances in the field of graphene-based gas sensors, emphasizing the use of modified graphene that broadly expands the range of nanomaterials sensors. Graphene films were grown on copper by chemical vapor deposition (CVD) and transferred to arbitrary substrates. After synthesis, the samples were functionalized with Al2O3 by ALD and characterized by a large set of experimental techniques such as XPS, Raman, and SEM. The results demonstrated that graphene was successfully synthesized and transferred to SiO2, glass, and polymer. As a proof-of-concept, ALD of Al2O3 was performed on the graphene surface to produce a graphene/metal oxide nanostructure towards the development of nanocomposites for gas sensing. From this perspective, a laboratory prototype device based on measuring the electrical properties of the graphene sample as a function of the gas absorption is under development.

Keywords: Pollution, health, graphene, gas, sensors.

Download

homepageImage en US

Osteoblast Behavior on Silicon and Porous-Silicon Substrates
Pages 1-12
Asma Parveen, Avinash Potluri, Debasish Kuila and David K. Mills

DOI: https://doi.org/10.6000/2369-3355.2017.04.01.1

Published: 14 June 2017

 

Abstract: Osteoblast viability, proliferation, protein expression and mineralization were studied on bare, micro- and nanoporous silicon (Si) substrates. Micro- and nano-porous-Si substrates were prepared by anodic etching of silicon in ethanolic hydrofluoric acid and characterized using scanning electron and atomic force microscopies. Mouse osteoblasts were cultured on these substrates and cellular response to these surfaces was assessed using the Live/Dead Cell Viability assay and the MTT assay for cell proliferation. Osteoblast functionality was assessed using immunohistochemistry for bone protein specific markers. Osteoblasts grew well on micro- and nanoporous silicon substrates over the twenty-one day experimental period supporting the assessment that these are suitable cell supportive surfaces. Cell proliferation rates on bare and nanoporous silicon were similar initially, however, nanoporous silicon displayed enhanced cell proliferation, in comparison to bare silicon, after 14 days in culture. Immunocytochemical assays, using bone specific markers, showed positive reactions for osteonectin and osteopontin expression on all substrates with staining intensity increasing over the 21-day experimental period. Calcium mineral deposits were quantified using the Alizarin Red histochemical assay and nanoporous silicon induced the highest level of calcium mineral production in comparison to bare and microporous silicon. The data supports the potential use of nanoporous silicon as a surface implant coating for dental and orthopedic applications. The ability to dope (and then release) drugs or growth factors from the silicon nanopores offers the potential for a multi-functional implant surface..

Keywords: Porous-Si, anodic etching, implant surfaces, osteoblasts.

Download