jcst

homepageImage en US

Alumina Surface Treated Pigmentary Titanium Dioxidewith Suppressed Photoactivity
Pages 51-58
N. Veronovski, M. Lešnik and D. Verhovšek

DOI: http://dx.doi.org/10.6000/2369-3355.2014.01.01.6

Published: 25 June 2014

 

Abstract: The aim of the optimization of the technological process was to coat the surface of the pigment in a controlled manner and to supress photoactivity in the titanium dioxide (TiO2) pigment. As part of this research, a systematic approach to TiO2 pigment surface treatment with alumina was conducted. Surface treatment with alumina plays a significant role in the improvement of TiO2 properties (e.g. weather resistance and photostability).This research encompasses a raw material analysis and process conditions study. Sodium aluminate and aluminium sulphate were used as a source of alumina hydroxide. The effectiveness of surface treatment was determined using scanning-transmission (STEM) and transmission (TEM) electron microscopy. The photoactivity of pigmentary TiO2 was determined before and after surface treatment. A controlled surface treatment process resulted in pigmentary TiO2 particles with uniform amorphous layers, which supressed the photoactivity of the pigment.

Keywords: Titanium dioxide, Surface treatment, Coatings, Alumina, Photo activity.

Download

homepageImage en US

Alumina Surface Treated TiO2 – From Process to Application
Pages 6-12
Nika Veronovski

DOI:

Published: 24 April 2015

 

Abstract: Titanium dioxide (TiO2) has found widespread use. Typically it is used in another matrix to impart certain properties. For example, it is widely used as a white pigment for paints and polymers. The aim of this research work was to achieve improvements in the sense of processability as well as the dispersion performance of alumina surface treated pigmentary TiO2in polymer matrix. Wet chemical method was used to modify the surface of the TiO2 pigment. Surface treatment included precipitation of hydrous oxides of aluminium on the surface of TiO2 particles. During controlled surface treatment, agglomeration has been avoided, which has been proved to improve applicative properties of TiO2 particles. In addition to that, organic additives were applied to enhance performance attributes of the pigmentary TiO2. The effectiveness of surface treatment was determined using scanning-transmission (STEM) and transmission (TEM) electron microscopy. Quantitative evaluation of quality and dispersion of the pigments has been performed using Filter pressure test. Lower pressure generated during filter pressure test when particles were well dispersed in a polymer matrix. Surface treatment also affected pigment processibility; i.e. filterability and settling, which is of high importance for process planning.

Keywords: Titanium dioxide, Surface treatment, Coatings, Alumina, Dispersibility.

Download

homepageImage en US

Alumina Surface Treated Pigmentary Titanium Dioxidewith Suppressed Photoactivity
Pages 1-8
Michael D. Seymour

DOI: http://dx.doi.org/10.6000/2369-3355.2016.03.01.1

Published: 24 May 2016

 

Abstract: It is well understood that mechanical seal performance is dependent upon the tribology of the seal face materials. Published material is available claiming the advantages of Polycrystalline Diamond (PCD) and its suitability for extended running under dry conditions; indeed, one such claim suggests that PCD coated faces are immune to dry running.In order to investigate this claim, the author undertook a series of rigorously controlled tests to evaluate the performance of mechanical seal faces coated with a Polycrystalline Diamond coating (PCD) against others with Diamond – Like Carbon (DLC) coatings. Seal surface topography was accurately measured before and after testing and was used to evaluate the wear behaviour. From the test results obtained it is concluded that neither coatings are suitable for extended dry running use. However, it was evident that seal faces coated with a new form of DLC identified as, Plasma Assisted – Chemical Vapour Deposition (PA-CVD) performed 18 times longer than the PCD coated ones before reaching a predetermined friction induced temperature. Publications can be cited as evidence that PCD coated seal faces are capable of producing very high frictional temperatures that could, in a dry running situation, allow certain liquid fuels such as flashing hydrocarbons to reach their auto-ignition temperatures. In addition, it was revealed that the PCD coated seal units are being sold at a higher cost than the equivalent DLC coated ones by a factor of three.

Keywords: Mechanical seals, Diamond-Like Carbon Coating, Polycrystalline Diamond.

Download

homepageImage en US

Are Diamond Surface Coatings Immune to Dry Running?
Pages 1-888x31
Michael D. Seymour

DOI: http://dx.doi.org/10.6000/2369-3355.2016.03.01.1

Published: 24 May 2016

 

Abstract: It is well understood that mechanical seal performance is dependent upon the tribology of the seal face materials. Published material is available claiming the advantages of Polycrystalline Diamond (PCD) and its suitability for extended running under dry conditions; indeed, one such claim suggests that PCD coated faces are immune to dry running.In order to investigate this claim, the author undertook a series of rigorously controlled tests to evaluate the performance of mechanical seal faces coated with a Polycrystalline Diamond coating (PCD) against others with Diamond – Like Carbon (DLC) coatings. Seal surface topography was accurately measured before and after testing and was used to evaluate the wear behaviour. From the test results obtained it is concluded that neither coatings are suitable for extended dry running use. However, it was evident that seal faces coated with a new form of DLC identified as, Plasma Assisted – Chemical Vapour Deposition (PA-CVD) performed 18 times longer than the PCD coated ones before reaching a predetermined friction induced temperature. Publications can be cited as evidence that PCD coated seal faces are capable of producing very high frictional temperatures that could, in a dry running situation, allow certain liquid fuels such as flashing hydrocarbons to reach their auto-ignition temperatures. In addition, it was revealed that the PCD coated seal units are being sold at a higher cost than the equivalent DLC coated ones by a factor of three.

Keywords: Mechanical seals, Diamond-Like Carbon Coating, Polycrystalline Diamond.

Download

homepageImage en US

Bacterial Anti-Adhesion of Coated and Uncoated Thin-Film-Composite (TFC) Polyamide (PA) Membranes
Pages 1-7
Juha Nikkola, Hanna-Leena Alakomi and Chuyang Y. Tang

DOI: http://dx.doi.org/10.6000/2369-3355.2014.01.01.1

Published: 25 June 2014

 

Abstract: This study investigates the bacterial anti-adhesion performance of uncoated and coated reverse osmosis (RO) membranes. All the membranes were commercially available fully-aromatic thin-film-composite (TFC) polyamide (PA) membranes. Two of the TFC PA membranes (SW30 and BW30) were coated using polyvinyl alcohol (PVA) coating, while the other three membranes (LE, XLE and NF90) were uncoated. Among the characterised TFC PA membranes, the PVA coated were more hydrophilic and their surface energy was higher in comparison to uncoated. In addition, the PVA coated membranes had lower surface roughness. AFM interaction force measurement demonstrated higher repellence performance for the more polar surface. Bacteria attachment test showed differences between the coated and the uncoated membranes. Indeed, the increase in hydrophilicity and surface polarity showed decrease in the attachment of Pseudomonas aeruginosa cells. Moreover, the results demonstrated that the surface polarity showed better correlation with the attachment of the bacteria. In addition, the type of the surface roughness may somehow contribute to the bacteria repellence.

Keywords: Thin film composite (TFC) polyamide (PA) membrane, polyvinyl alcohol (PVA), surface energy, topography, biofouling.

Download