jcst

homepageImage en US

Effect of Nanocrystalline Diamond Films Deflection on Wear Observed in Reciprocating Sliding Tests
Pages 109-115
V. Podgursky, A. Bogatov, S. Sobolev, M. Viljus, V. Sedov, E. Ashkinazi and V. Ralchenko

DOI: http://dx.doi.org/10.6000/2369-3355.2016.03.03.2

Published: 21 December 2016

 

Abstract: The present study deals with the tribological behavior of nanocrystalline diamond (NCD) films. The diamond films were deposited by microwave plasma enhanced chemical vapor deposition (MPCVD) in methane/hydrogen/air plasma on the Si(100) substrates. The tribological properties were studied by reciprocal sliding tests against Si3N4 balls. The depth profiles and surface morphology of the wear scars were investigated by means of mechanical profilometry and scanning electron microscopy (SEM). Various adaptation processes occur between contacting surfaces including asperity polishing, formation of carbonaceous tribolayer and ripple patterns on the wear scar surfaces. The film deflection is the specific form of adaptation decreasing contact pressure and, therefore, the damage (including wear)of both counter bodies. The deflection of NCD films in sliding tests can be related with the effect of fatigue.

Keywords: Diamond films, tribology, deflection, adaptation, self-organization.

$0 Download" currency="

homepageImage en US

Surface Modification of Natural Rubber by Sulfur hexafluoride (SF6) Plasma Treatment: A New Approach to Improve Mechanical and Hydrophobic Properties
Pages 116-120
F.C. Cabrera, G. Dognani, R.J. dos Santos, D.L.S. Agostini, N.C. Cruz and A.E. Job

DOI: http://dx.doi.org/10.6000/2369-3355.2016.03.03.3

Published: 21 December 2016

 

Abstract: Plasma treatments have faced growing interest as important strategy to modify the hydrophobic/hydrophilic characteristics of materials. However, challenges related to the plasma modification of polymers are the improvement of the chemical resistance without decreasing the mechanical resistance. In this letter, we present for the first time a plasma treatment, using Sulfur hexafluoride (SF6), analogous to vulcanization process, of natural rubber surface, which resulted in a chemical and tension resistance improvements. The natural rubber membranes were coated with glow discharge plasmas generated in sulfur hexafluoride (SF6) atmospheres at a total pressure of 160 mTorr and applying 70 W of radiofrequency. Plasma treatment increases the contact angles from 64° to 125° i.e. leading to a hydrophobic surface. The tension at rupture increased from 3.7 to 6.1 MPa compared to natural rubber without plasma treatment demonstrated by stress-strain investigation. These results provide a fast alternative approach to improve mechanical and chemical properties of rubber-based products.

Keywords: Plasma Treatment, Natural rubber, Flexible, Reinforcement treatment.

Download

Download

homepageImage en US

Non-Destructive Evaluation of Protective Coatings on AA2024-T3 Aluminum Alloy Used in Aeronautical Parts by Electrochemical Impedance Spectroscopy
Pages 121-128
Alain Robin, Luis Gustavo Pacheco and Júlio César Lourenço

DOI: http://dx.doi.org/10.6000/2369-3355.2016.03.03.4

Published: 21 December 2016

 

Abstract: The 2xxx aluminum alloys are largely used in aeronautical structural applications (fuselage, wings) due to their high mechanical strength/weight ratio, but have poor localized corrosion resistance. Their anticorrosive protection is generally ensured by multi-layered coatings based on inorganic and organic layers. The usual technique to evaluate the corrosion protection efficiency provided by the coatings is the salt spray test (ASTM B117). Nevertheless, though the test is employed worldwide, it presents some weak points, such as: it is a destructive test, subjectivity of test (only visual evaluation by the operator), low correlation between conditions of the test and real conditions, low reproductibility. The electrochemical impedance spectroscopy would be an alternative: non-destructive test, objectivity of the test (impedance measurement), the test can be performed in-situ.

In this work, uncoated and coated AA2024-T3 alloys were tested in solutions of NaCl 3.5wt% at room temperature. The coatings were: (a): chromating conversion coating; (b): (a) + epoxy primer; (c): (b) + top coat; (d): chromic anodizing coating; (e): (d) + epoxy primer; (f): (e) + top coat. The specimens of AA 2024-T3 divided into seven groups of duplicates (each group representing a superficial state, non protected or a type of coating) were submitted to electrochemical impedance spectroscopy at corrosion potential using frequencies in the 0.1 to 100 kHz range. To ensure reliability of the results, a design of experiment based on a saturated factorial design was applied involving two control variables (treatment of surface and alternating current frequency), one response variable (impedance modulus) and two blocks (samples and repetitions). Some simulations of surface degradation via standardized accelerated tests (salt spray test) and simulations of common defects in process or assembly operations in aircraft manufacture according to valid standards in the aeronautical industry were also made on coated AA2024-T3 specimens. These surfaces were also tested using electrochemical impedance spectroscopy under the same experimental conditions (3.5 wt% NaCl, room temperature, 0.1Hz-100kHz). The statistical analysis of results showed the effectiveness of the application of electrochemical impedance spectroscopy to assist in the quality control of processes of surface treatments in the aerospace sector. The synergic effect involving the care taken in the experimental conditions, the type of experimental design and the sampling size were important to validate the results facing violations of hypotheses in the analysis of variance method. Each coating on AA2024-T3 alloy, and also the bare metal, is characterized by an Impedance versus Frequency Bode curve, sort of fingerprint, which can be used to identify the coating and to evaluate easily and accurately its quality. The results have demonstrated promising and allow to establish strategies for implementation of the electrochemical impedance spectroscopy technique in surface treatment processes.

Keywords: AA2024 alloy, corrosion, EIS, non-destructive test, aeronautic industry.

Download

homepageImage en US

Focused Electron Beam Induced Processing Renders at Room Temperaturea Bose-Einstein Condensate in Koops-GranMat
Pages 50-55
Hans W.P. Koops

DOI: http://dx.doi.org/10.6000/2369-3355.2016.03.02.1

Published: 13 October 2016

 

Abstract: Focused Electron Beam Induced Processing allows to generate nanocrystalline materials with metallic conductivity and also nanogranular materials with metal crystals embedded in a fullerene matrix, which shows at room temperature 1000 times better conductivity than superconductors at 40 K due to a Bose Einstein Condensate. Resistors and field emitters carry > 50 MA/cm² current density and deliver up to 1 mA current by field emission, when having an enlarged foot point contact to normal metal like Gold. An explanation for the different characteristics is given. The reason for the generation of the Bose Einstein Condensate is explained, and applications are described.

Keywords: Field emission, Focused electron beam induced processing,GDSII-layout exposure control, x,-y,-t,-nested loop exposure control, 3-d e-beam printing, Super conductivity, Cooper pairs, Bose Einstein Condensate, Koops-Pairs, Applications.

Download